Trigonometry Examples

Simplify csc(75)^2-tan(15)^2
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
The exact value of is .
Tap for more steps...
Step 1.1.1
Split into two angles where the values of the six trigonometric functions are known.
Step 1.1.2
Apply the sum of angles identity.
Step 1.1.3
The exact value of is .
Step 1.1.4
The exact value of is .
Step 1.1.5
The exact value of is .
Step 1.1.6
The exact value of is .
Step 1.1.7
The exact value of is .
Step 1.1.8
The exact value of is .
Step 1.1.9
The exact value of is .
Step 1.1.10
The exact value of is .
Step 1.1.11
Simplify .
Tap for more steps...
Step 1.1.11.1
Simplify the numerator.
Tap for more steps...
Step 1.1.11.1.1
Multiply by .
Step 1.1.11.1.2
Combine and .
Step 1.1.11.1.3
Combine and .
Step 1.1.11.2
Simplify the denominator.
Tap for more steps...
Step 1.1.11.2.1
Multiply by .
Step 1.1.11.2.2
Combine and simplify the denominator.
Tap for more steps...
Step 1.1.11.2.2.1
Multiply by .
Step 1.1.11.2.2.2
Raise to the power of .
Step 1.1.11.2.2.3
Raise to the power of .
Step 1.1.11.2.2.4
Use the power rule to combine exponents.
Step 1.1.11.2.2.5
Add and .
Step 1.1.11.2.2.6
Rewrite as .
Tap for more steps...
Step 1.1.11.2.2.6.1
Use to rewrite as .
Step 1.1.11.2.2.6.2
Apply the power rule and multiply exponents, .
Step 1.1.11.2.2.6.3
Combine and .
Step 1.1.11.2.2.6.4
Cancel the common factor of .
Tap for more steps...
Step 1.1.11.2.2.6.4.1
Cancel the common factor.
Step 1.1.11.2.2.6.4.2
Rewrite the expression.
Step 1.1.11.2.2.6.5
Evaluate the exponent.
Step 1.1.11.2.3
Multiply .
Tap for more steps...
Step 1.1.11.2.3.1
Combine and .
Step 1.1.11.2.3.2
Combine using the product rule for radicals.
Step 1.1.11.2.3.3
Multiply by .
Step 1.1.11.2.4
Multiply by .
Step 1.1.11.2.5
Combine and simplify the denominator.
Tap for more steps...
Step 1.1.11.2.5.1
Multiply by .
Step 1.1.11.2.5.2
Raise to the power of .
Step 1.1.11.2.5.3
Raise to the power of .
Step 1.1.11.2.5.4
Use the power rule to combine exponents.
Step 1.1.11.2.5.5
Add and .
Step 1.1.11.2.5.6
Rewrite as .
Tap for more steps...
Step 1.1.11.2.5.6.1
Use to rewrite as .
Step 1.1.11.2.5.6.2
Apply the power rule and multiply exponents, .
Step 1.1.11.2.5.6.3
Combine and .
Step 1.1.11.2.5.6.4
Cancel the common factor of .
Tap for more steps...
Step 1.1.11.2.5.6.4.1
Cancel the common factor.
Step 1.1.11.2.5.6.4.2
Rewrite the expression.
Step 1.1.11.2.5.6.5
Evaluate the exponent.
Step 1.1.11.2.6
Cancel the common factor of .
Tap for more steps...
Step 1.1.11.2.6.1
Cancel the common factor.
Step 1.1.11.2.6.2
Rewrite the expression.
Step 1.1.11.2.7
To write as a fraction with a common denominator, multiply by .
Step 1.1.11.2.8
Combine and .
Step 1.1.11.2.9
Combine the numerators over the common denominator.
Step 1.1.11.2.10
Multiply by .
Step 1.1.11.3
Simplify the numerator.
Tap for more steps...
Step 1.1.11.3.1
Multiply by .
Step 1.1.11.3.2
Multiply by .
Step 1.1.11.4
Simplify the denominator.
Tap for more steps...
Step 1.1.11.4.1
Combine using the product rule for radicals.
Step 1.1.11.4.2
Multiply by .
Step 1.1.11.5
Simplify the numerator.
Tap for more steps...
Step 1.1.11.5.1
Combine and into a single radical.
Step 1.1.11.5.2
Cancel the common factor of and .
Tap for more steps...
Step 1.1.11.5.2.1
Factor out of .
Step 1.1.11.5.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.11.5.2.2.1
Factor out of .
Step 1.1.11.5.2.2.2
Cancel the common factor.
Step 1.1.11.5.2.2.3
Rewrite the expression.
Step 1.1.11.5.3
Rewrite as .
Step 1.1.11.5.4
Any root of is .
Step 1.1.11.5.5
Multiply by .
Step 1.1.11.5.6
Combine and simplify the denominator.
Tap for more steps...
Step 1.1.11.5.6.1
Multiply by .
Step 1.1.11.5.6.2
Raise to the power of .
Step 1.1.11.5.6.3
Raise to the power of .
Step 1.1.11.5.6.4
Use the power rule to combine exponents.
Step 1.1.11.5.6.5
Add and .
Step 1.1.11.5.6.6
Rewrite as .
Tap for more steps...
Step 1.1.11.5.6.6.1
Use to rewrite as .
Step 1.1.11.5.6.6.2
Apply the power rule and multiply exponents, .
Step 1.1.11.5.6.6.3
Combine and .
Step 1.1.11.5.6.6.4
Cancel the common factor of .
Tap for more steps...
Step 1.1.11.5.6.6.4.1
Cancel the common factor.
Step 1.1.11.5.6.6.4.2
Rewrite the expression.
Step 1.1.11.5.6.6.5
Evaluate the exponent.
Step 1.1.11.5.7
Combine and .
Step 1.1.11.6
Multiply the numerator by the reciprocal of the denominator.
Step 1.1.11.7
Cancel the common factor of .
Tap for more steps...
Step 1.1.11.7.1
Cancel the common factor.
Step 1.1.11.7.2
Rewrite the expression.
Step 1.1.11.8
Combine and .
Step 1.1.11.9
Combine and .
Step 1.1.11.10
Cancel the common factor of and .
Tap for more steps...
Step 1.1.11.10.1
Factor out of .
Step 1.1.11.10.2
Cancel the common factors.
Tap for more steps...
Step 1.1.11.10.2.1
Factor out of .
Step 1.1.11.10.2.2
Factor out of .
Step 1.1.11.10.2.3
Factor out of .
Step 1.1.11.10.2.4
Cancel the common factor.
Step 1.1.11.10.2.5
Rewrite the expression.
Step 1.1.11.11
Multiply by .
Step 1.1.11.12
Multiply by .
Step 1.1.11.13
Expand the denominator using the FOIL method.
Step 1.1.11.14
Simplify.
Step 1.1.11.15
Cancel the common factor of and .
Tap for more steps...
Step 1.1.11.15.1
Factor out of .
Step 1.1.11.15.2
Cancel the common factors.
Tap for more steps...
Step 1.1.11.15.2.1
Factor out of .
Step 1.1.11.15.2.2
Cancel the common factor.
Step 1.1.11.15.2.3
Rewrite the expression.
Step 1.1.11.16
Apply the distributive property.
Step 1.1.11.17
Combine using the product rule for radicals.
Step 1.1.11.18
Multiply .
Tap for more steps...
Step 1.1.11.18.1
Combine using the product rule for radicals.
Step 1.1.11.18.2
Multiply by .
Step 1.1.11.19
Simplify each term.
Tap for more steps...
Step 1.1.11.19.1
Multiply by .
Step 1.1.11.19.2
Rewrite as .
Tap for more steps...
Step 1.1.11.19.2.1
Factor out of .
Step 1.1.11.19.2.2
Rewrite as .
Step 1.1.11.19.3
Pull terms out from under the radical.
Step 1.1.11.20
Cancel the common factor of and .
Tap for more steps...
Step 1.1.11.20.1
Factor out of .
Step 1.1.11.20.2
Factor out of .
Step 1.1.11.20.3
Factor out of .
Step 1.1.11.20.4
Move the negative one from the denominator of .
Step 1.1.11.21
Rewrite as .
Step 1.1.11.22
Apply the distributive property.
Step 1.1.11.23
Multiply .
Tap for more steps...
Step 1.1.11.23.1
Multiply by .
Step 1.1.11.23.2
Multiply by .
Step 1.2
Rewrite as .
Step 1.3
Expand using the FOIL Method.
Tap for more steps...
Step 1.3.1
Apply the distributive property.
Step 1.3.2
Apply the distributive property.
Step 1.3.3
Apply the distributive property.
Step 1.4
Simplify and combine like terms.
Tap for more steps...
Step 1.4.1
Simplify each term.
Tap for more steps...
Step 1.4.1.1
Multiply .
Tap for more steps...
Step 1.4.1.1.1
Multiply by .
Step 1.4.1.1.2
Multiply by .
Step 1.4.1.1.3
Raise to the power of .
Step 1.4.1.1.4
Raise to the power of .
Step 1.4.1.1.5
Use the power rule to combine exponents.
Step 1.4.1.1.6
Add and .
Step 1.4.1.2
Rewrite as .
Tap for more steps...
Step 1.4.1.2.1
Use to rewrite as .
Step 1.4.1.2.2
Apply the power rule and multiply exponents, .
Step 1.4.1.2.3
Combine and .
Step 1.4.1.2.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.1.2.4.1
Cancel the common factor.
Step 1.4.1.2.4.2
Rewrite the expression.
Step 1.4.1.2.5
Evaluate the exponent.
Step 1.4.1.3
Multiply .
Tap for more steps...
Step 1.4.1.3.1
Combine using the product rule for radicals.
Step 1.4.1.3.2
Multiply by .
Step 1.4.1.4
Rewrite as .
Tap for more steps...
Step 1.4.1.4.1
Factor out of .
Step 1.4.1.4.2
Rewrite as .
Step 1.4.1.5
Pull terms out from under the radical.
Step 1.4.1.6
Multiply by .
Step 1.4.1.7
Multiply .
Tap for more steps...
Step 1.4.1.7.1
Combine using the product rule for radicals.
Step 1.4.1.7.2
Multiply by .
Step 1.4.1.8
Rewrite as .
Tap for more steps...
Step 1.4.1.8.1
Factor out of .
Step 1.4.1.8.2
Rewrite as .
Step 1.4.1.9
Pull terms out from under the radical.
Step 1.4.1.10
Multiply by .
Step 1.4.1.11
Combine using the product rule for radicals.
Step 1.4.1.12
Multiply by .
Step 1.4.1.13
Rewrite as .
Step 1.4.1.14
Pull terms out from under the radical, assuming positive real numbers.
Step 1.4.2
Add and .
Step 1.4.3
Subtract from .
Step 1.5
The exact value of is .
Tap for more steps...
Step 1.5.1
Split into two angles where the values of the six trigonometric functions are known.
Step 1.5.2
Separate negation.
Step 1.5.3
Apply the difference of angles identity.
Step 1.5.4
The exact value of is .
Step 1.5.5
The exact value of is .
Step 1.5.6
The exact value of is .
Step 1.5.7
The exact value of is .
Step 1.5.8
Simplify .
Tap for more steps...
Step 1.5.8.1
Multiply the numerator and denominator of the fraction by .
Tap for more steps...
Step 1.5.8.1.1
Multiply by .
Step 1.5.8.1.2
Combine.
Step 1.5.8.2
Apply the distributive property.
Step 1.5.8.3
Cancel the common factor of .
Tap for more steps...
Step 1.5.8.3.1
Move the leading negative in into the numerator.
Step 1.5.8.3.2
Cancel the common factor.
Step 1.5.8.3.3
Rewrite the expression.
Step 1.5.8.4
Multiply by .
Step 1.5.8.5
Simplify the denominator.
Tap for more steps...
Step 1.5.8.5.1
Multiply by .
Step 1.5.8.5.2
Cancel the common factor of .
Tap for more steps...
Step 1.5.8.5.2.1
Factor out of .
Step 1.5.8.5.2.2
Cancel the common factor.
Step 1.5.8.5.2.3
Rewrite the expression.
Step 1.5.8.6
Multiply by .
Step 1.5.8.7
Multiply by .
Step 1.5.8.8
Expand the denominator using the FOIL method.
Step 1.5.8.9
Simplify.
Step 1.5.8.10
Simplify the numerator.
Tap for more steps...
Step 1.5.8.10.1
Raise to the power of .
Step 1.5.8.10.2
Raise to the power of .
Step 1.5.8.10.3
Use the power rule to combine exponents.
Step 1.5.8.10.4
Add and .
Step 1.5.8.11
Rewrite as .
Step 1.5.8.12
Expand using the FOIL Method.
Tap for more steps...
Step 1.5.8.12.1
Apply the distributive property.
Step 1.5.8.12.2
Apply the distributive property.
Step 1.5.8.12.3
Apply the distributive property.
Step 1.5.8.13
Simplify and combine like terms.
Tap for more steps...
Step 1.5.8.13.1
Simplify each term.
Tap for more steps...
Step 1.5.8.13.1.1
Multiply by .
Step 1.5.8.13.1.2
Multiply by .
Step 1.5.8.13.1.3
Multiply by .
Step 1.5.8.13.1.4
Multiply .
Tap for more steps...
Step 1.5.8.13.1.4.1
Multiply by .
Step 1.5.8.13.1.4.2
Multiply by .
Step 1.5.8.13.1.4.3
Raise to the power of .
Step 1.5.8.13.1.4.4
Raise to the power of .
Step 1.5.8.13.1.4.5
Use the power rule to combine exponents.
Step 1.5.8.13.1.4.6
Add and .
Step 1.5.8.13.1.5
Rewrite as .
Tap for more steps...
Step 1.5.8.13.1.5.1
Use to rewrite as .
Step 1.5.8.13.1.5.2
Apply the power rule and multiply exponents, .
Step 1.5.8.13.1.5.3
Combine and .
Step 1.5.8.13.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 1.5.8.13.1.5.4.1
Cancel the common factor.
Step 1.5.8.13.1.5.4.2
Rewrite the expression.
Step 1.5.8.13.1.5.5
Evaluate the exponent.
Step 1.5.8.13.2
Add and .
Step 1.5.8.13.3
Subtract from .
Step 1.5.8.14
Cancel the common factor of and .
Tap for more steps...
Step 1.5.8.14.1
Factor out of .
Step 1.5.8.14.2
Factor out of .
Step 1.5.8.14.3
Factor out of .
Step 1.5.8.14.4
Cancel the common factors.
Tap for more steps...
Step 1.5.8.14.4.1
Factor out of .
Step 1.5.8.14.4.2
Cancel the common factor.
Step 1.5.8.14.4.3
Rewrite the expression.
Step 1.5.8.14.4.4
Divide by .
Step 1.6
Rewrite as .
Step 1.7
Expand using the FOIL Method.
Tap for more steps...
Step 1.7.1
Apply the distributive property.
Step 1.7.2
Apply the distributive property.
Step 1.7.3
Apply the distributive property.
Step 1.8
Simplify and combine like terms.
Tap for more steps...
Step 1.8.1
Simplify each term.
Tap for more steps...
Step 1.8.1.1
Multiply by .
Step 1.8.1.2
Multiply by .
Step 1.8.1.3
Multiply by .
Step 1.8.1.4
Multiply .
Tap for more steps...
Step 1.8.1.4.1
Multiply by .
Step 1.8.1.4.2
Multiply by .
Step 1.8.1.4.3
Raise to the power of .
Step 1.8.1.4.4
Raise to the power of .
Step 1.8.1.4.5
Use the power rule to combine exponents.
Step 1.8.1.4.6
Add and .
Step 1.8.1.5
Rewrite as .
Tap for more steps...
Step 1.8.1.5.1
Use to rewrite as .
Step 1.8.1.5.2
Apply the power rule and multiply exponents, .
Step 1.8.1.5.3
Combine and .
Step 1.8.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 1.8.1.5.4.1
Cancel the common factor.
Step 1.8.1.5.4.2
Rewrite the expression.
Step 1.8.1.5.5
Evaluate the exponent.
Step 1.8.2
Add and .
Step 1.8.3
Subtract from .
Step 1.9
Apply the distributive property.
Step 1.10
Multiply by .
Step 1.11
Multiply by .
Step 2
Simplify by adding terms.
Tap for more steps...
Step 2.1
Subtract from .
Step 2.2
Add and .
Step 2.3
Add and .