Enter a problem...
Trigonometry Examples
cos2(60)+sec2(150)+csc2(225)cos2(60)+sec2(150)+csc2(225)
Step 1
Step 1.1
The exact value of cos(60)cos(60) is 1212.
(12)2+sec2(150)+csc2(225)(12)2+sec2(150)+csc2(225)
Step 1.2
Apply the product rule to 1212.
1222+sec2(150)+csc2(225)1222+sec2(150)+csc2(225)
Step 1.3
One to any power is one.
122+sec2(150)+csc2(225)122+sec2(150)+csc2(225)
Step 1.4
Raise 22 to the power of 22.
14+sec2(150)+csc2(225)14+sec2(150)+csc2(225)
Step 1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the second quadrant.
14+(-sec(30))2+csc2(225)14+(−sec(30))2+csc2(225)
Step 1.6
The exact value of sec(30)sec(30) is 2√32√3.
14+(-2√3)2+csc2(225)14+(−2√3)2+csc2(225)
Step 1.7
Multiply 2√32√3 by √3√3√3√3.
14+(-(2√3⋅√3√3))2+csc2(225)14+(−(2√3⋅√3√3))2+csc2(225)
Step 1.8
Combine and simplify the denominator.
Step 1.8.1
Multiply 2√32√3 by √3√3√3√3.
14+(-2√3√3√3)2+csc2(225)14+(−2√3√3√3)2+csc2(225)
Step 1.8.2
Raise √3√3 to the power of 11.
14+(-2√3√31√3)2+csc2(225)14+(−2√3√31√3)2+csc2(225)
Step 1.8.3
Raise √3√3 to the power of 11.
14+(-2√3√31√31)2+csc2(225)14+(−2√3√31√31)2+csc2(225)
Step 1.8.4
Use the power rule aman=am+naman=am+n to combine exponents.
14+(-2√3√31+1)2+csc2(225)14+(−2√3√31+1)2+csc2(225)
Step 1.8.5
Add 11 and 11.
14+(-2√3√32)2+csc2(225)14+(−2√3√32)2+csc2(225)
Step 1.8.6
Rewrite √32√32 as 33.
Step 1.8.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
14+(-2√3(312)2)2+csc2(225)14+⎛⎜
⎜⎝−2√3(312)2⎞⎟
⎟⎠2+csc2(225)
Step 1.8.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
14+(-2√3312⋅2)2+csc2(225)14+(−2√3312⋅2)2+csc2(225)
Step 1.8.6.3
Combine 1212 and 22.
14+(-2√3322)2+csc2(225)14+(−2√3322)2+csc2(225)
Step 1.8.6.4
Cancel the common factor of 22.
Step 1.8.6.4.1
Cancel the common factor.
14+(-2√3322)2+csc2(225)
Step 1.8.6.4.2
Rewrite the expression.
14+(-2√331)2+csc2(225)
14+(-2√331)2+csc2(225)
Step 1.8.6.5
Evaluate the exponent.
14+(-2√33)2+csc2(225)
14+(-2√33)2+csc2(225)
14+(-2√33)2+csc2(225)
Step 1.9
Use the power rule (ab)n=anbn to distribute the exponent.
Step 1.9.1
Apply the product rule to -2√33.
14+(-1)2(2√33)2+csc2(225)
Step 1.9.2
Apply the product rule to 2√33.
14+(-1)2(2√3)232+csc2(225)
Step 1.9.3
Apply the product rule to 2√3.
14+(-1)222√3232+csc2(225)
14+(-1)222√3232+csc2(225)
Step 1.10
Raise -1 to the power of 2.
14+122√3232+csc2(225)
Step 1.11
Multiply 22√3232 by 1.
14+22√3232+csc2(225)
Step 1.12
Simplify the numerator.
Step 1.12.1
Raise 2 to the power of 2.
14+4√3232+csc2(225)
Step 1.12.2
Rewrite √32 as 3.
Step 1.12.2.1
Use n√ax=axn to rewrite √3 as 312.
14+4(312)232+csc2(225)
Step 1.12.2.2
Apply the power rule and multiply exponents, (am)n=amn.
14+4⋅312⋅232+csc2(225)
Step 1.12.2.3
Combine 12 and 2.
14+4⋅32232+csc2(225)
Step 1.12.2.4
Cancel the common factor of 2.
Step 1.12.2.4.1
Cancel the common factor.
14+4⋅32232+csc2(225)
Step 1.12.2.4.2
Rewrite the expression.
14+4⋅3132+csc2(225)
14+4⋅3132+csc2(225)
Step 1.12.2.5
Evaluate the exponent.
14+4⋅332+csc2(225)
14+4⋅332+csc2(225)
14+4⋅332+csc2(225)
Step 1.13
Raise 3 to the power of 2.
14+4⋅39+csc2(225)
Step 1.14
Multiply 4 by 3.
14+129+csc2(225)
Step 1.15
Cancel the common factor of 12 and 9.
Step 1.15.1
Factor 3 out of 12.
14+3(4)9+csc2(225)
Step 1.15.2
Cancel the common factors.
Step 1.15.2.1
Factor 3 out of 9.
14+3⋅43⋅3+csc2(225)
Step 1.15.2.2
Cancel the common factor.
14+3⋅43⋅3+csc2(225)
Step 1.15.2.3
Rewrite the expression.
14+43+csc2(225)
14+43+csc2(225)
14+43+csc2(225)
Step 1.16
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosecant is negative in the third quadrant.
14+43+(-csc(45))2
Step 1.17
The exact value of csc(45) is √2.
14+43+(-√2)2
Step 1.18
Apply the product rule to -√2.
14+43+(-1)2√22
Step 1.19
Raise -1 to the power of 2.
14+43+1√22
Step 1.20
Multiply √22 by 1.
14+43+√22
Step 1.21
Rewrite √22 as 2.
Step 1.21.1
Use n√ax=axn to rewrite √2 as 212.
14+43+(212)2
Step 1.21.2
Apply the power rule and multiply exponents, (am)n=amn.
14+43+212⋅2
Step 1.21.3
Combine 12 and 2.
14+43+222
Step 1.21.4
Cancel the common factor of 2.
Step 1.21.4.1
Cancel the common factor.
14+43+222
Step 1.21.4.2
Rewrite the expression.
14+43+21
14+43+21
Step 1.21.5
Evaluate the exponent.
14+43+2
14+43+2
14+43+2
Step 2
Step 2.1
Multiply 14 by 33.
14⋅33+43+2
Step 2.2
Multiply 14 by 33.
34⋅3+43+2
Step 2.3
Multiply 43 by 44.
34⋅3+43⋅44+2
Step 2.4
Multiply 43 by 44.
34⋅3+4⋅43⋅4+2
Step 2.5
Write 2 as a fraction with denominator 1.
34⋅3+4⋅43⋅4+21
Step 2.6
Multiply 21 by 1212.
34⋅3+4⋅43⋅4+21⋅1212
Step 2.7
Multiply 21 by 1212.
34⋅3+4⋅43⋅4+2⋅1212
Step 2.8
Reorder the factors of 4⋅3.
33⋅4+4⋅43⋅4+2⋅1212
Step 2.9
Multiply 3 by 4.
312+4⋅43⋅4+2⋅1212
Step 2.10
Multiply 3 by 4.
312+4⋅412+2⋅1212
312+4⋅412+2⋅1212
Step 3
Combine the numerators over the common denominator.
3+4⋅4+2⋅1212
Step 4
Step 4.1
Multiply 4 by 4.
3+16+2⋅1212
Step 4.2
Multiply 2 by 12.
3+16+2412
3+16+2412
Step 5
Step 5.1
Add 3 and 16.
19+2412
Step 5.2
Add 19 and 24.
4312
4312
Step 6
The result can be shown in multiple forms.
Exact Form:
4312
Decimal Form:
3.58‾3
Mixed Number Form:
3712