Trigonometry Examples

Simplify cos(60)^2+sec(150)^2+csc(225)^2
cos2(60)+sec2(150)+csc2(225)cos2(60)+sec2(150)+csc2(225)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
The exact value of cos(60)cos(60) is 1212.
(12)2+sec2(150)+csc2(225)(12)2+sec2(150)+csc2(225)
Step 1.2
Apply the product rule to 1212.
1222+sec2(150)+csc2(225)1222+sec2(150)+csc2(225)
Step 1.3
One to any power is one.
122+sec2(150)+csc2(225)122+sec2(150)+csc2(225)
Step 1.4
Raise 22 to the power of 22.
14+sec2(150)+csc2(225)14+sec2(150)+csc2(225)
Step 1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the second quadrant.
14+(-sec(30))2+csc2(225)14+(sec(30))2+csc2(225)
Step 1.6
The exact value of sec(30)sec(30) is 2323.
14+(-23)2+csc2(225)14+(23)2+csc2(225)
Step 1.7
Multiply 2323 by 3333.
14+(-(2333))2+csc2(225)14+((2333))2+csc2(225)
Step 1.8
Combine and simplify the denominator.
Tap for more steps...
Step 1.8.1
Multiply 2323 by 3333.
14+(-2333)2+csc2(225)14+(2333)2+csc2(225)
Step 1.8.2
Raise 33 to the power of 11.
14+(-23313)2+csc2(225)14+(23313)2+csc2(225)
Step 1.8.3
Raise 33 to the power of 11.
14+(-233131)2+csc2(225)14+(233131)2+csc2(225)
Step 1.8.4
Use the power rule aman=am+naman=am+n to combine exponents.
14+(-2331+1)2+csc2(225)14+(2331+1)2+csc2(225)
Step 1.8.5
Add 11 and 11.
14+(-2332)2+csc2(225)14+(2332)2+csc2(225)
Step 1.8.6
Rewrite 3232 as 33.
Tap for more steps...
Step 1.8.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
14+(-23(312)2)2+csc2(225)14+⎜ ⎜23(312)2⎟ ⎟2+csc2(225)
Step 1.8.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
14+(-233122)2+csc2(225)14+(233122)2+csc2(225)
Step 1.8.6.3
Combine 1212 and 22.
14+(-23322)2+csc2(225)14+(23322)2+csc2(225)
Step 1.8.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 1.8.6.4.1
Cancel the common factor.
14+(-23322)2+csc2(225)
Step 1.8.6.4.2
Rewrite the expression.
14+(-2331)2+csc2(225)
14+(-2331)2+csc2(225)
Step 1.8.6.5
Evaluate the exponent.
14+(-233)2+csc2(225)
14+(-233)2+csc2(225)
14+(-233)2+csc2(225)
Step 1.9
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 1.9.1
Apply the product rule to -233.
14+(-1)2(233)2+csc2(225)
Step 1.9.2
Apply the product rule to 233.
14+(-1)2(23)232+csc2(225)
Step 1.9.3
Apply the product rule to 23.
14+(-1)2223232+csc2(225)
14+(-1)2223232+csc2(225)
Step 1.10
Raise -1 to the power of 2.
14+1223232+csc2(225)
Step 1.11
Multiply 223232 by 1.
14+223232+csc2(225)
Step 1.12
Simplify the numerator.
Tap for more steps...
Step 1.12.1
Raise 2 to the power of 2.
14+43232+csc2(225)
Step 1.12.2
Rewrite 32 as 3.
Tap for more steps...
Step 1.12.2.1
Use nax=axn to rewrite 3 as 312.
14+4(312)232+csc2(225)
Step 1.12.2.2
Apply the power rule and multiply exponents, (am)n=amn.
14+4312232+csc2(225)
Step 1.12.2.3
Combine 12 and 2.
14+432232+csc2(225)
Step 1.12.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.12.2.4.1
Cancel the common factor.
14+432232+csc2(225)
Step 1.12.2.4.2
Rewrite the expression.
14+43132+csc2(225)
14+43132+csc2(225)
Step 1.12.2.5
Evaluate the exponent.
14+4332+csc2(225)
14+4332+csc2(225)
14+4332+csc2(225)
Step 1.13
Raise 3 to the power of 2.
14+439+csc2(225)
Step 1.14
Multiply 4 by 3.
14+129+csc2(225)
Step 1.15
Cancel the common factor of 12 and 9.
Tap for more steps...
Step 1.15.1
Factor 3 out of 12.
14+3(4)9+csc2(225)
Step 1.15.2
Cancel the common factors.
Tap for more steps...
Step 1.15.2.1
Factor 3 out of 9.
14+3433+csc2(225)
Step 1.15.2.2
Cancel the common factor.
14+3433+csc2(225)
Step 1.15.2.3
Rewrite the expression.
14+43+csc2(225)
14+43+csc2(225)
14+43+csc2(225)
Step 1.16
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosecant is negative in the third quadrant.
14+43+(-csc(45))2
Step 1.17
The exact value of csc(45) is 2.
14+43+(-2)2
Step 1.18
Apply the product rule to -2.
14+43+(-1)222
Step 1.19
Raise -1 to the power of 2.
14+43+122
Step 1.20
Multiply 22 by 1.
14+43+22
Step 1.21
Rewrite 22 as 2.
Tap for more steps...
Step 1.21.1
Use nax=axn to rewrite 2 as 212.
14+43+(212)2
Step 1.21.2
Apply the power rule and multiply exponents, (am)n=amn.
14+43+2122
Step 1.21.3
Combine 12 and 2.
14+43+222
Step 1.21.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.21.4.1
Cancel the common factor.
14+43+222
Step 1.21.4.2
Rewrite the expression.
14+43+21
14+43+21
Step 1.21.5
Evaluate the exponent.
14+43+2
14+43+2
14+43+2
Step 2
Find the common denominator.
Tap for more steps...
Step 2.1
Multiply 14 by 33.
1433+43+2
Step 2.2
Multiply 14 by 33.
343+43+2
Step 2.3
Multiply 43 by 44.
343+4344+2
Step 2.4
Multiply 43 by 44.
343+4434+2
Step 2.5
Write 2 as a fraction with denominator 1.
343+4434+21
Step 2.6
Multiply 21 by 1212.
343+4434+211212
Step 2.7
Multiply 21 by 1212.
343+4434+21212
Step 2.8
Reorder the factors of 43.
334+4434+21212
Step 2.9
Multiply 3 by 4.
312+4434+21212
Step 2.10
Multiply 3 by 4.
312+4412+21212
312+4412+21212
Step 3
Combine the numerators over the common denominator.
3+44+21212
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply 4 by 4.
3+16+21212
Step 4.2
Multiply 2 by 12.
3+16+2412
3+16+2412
Step 5
Simplify by adding numbers.
Tap for more steps...
Step 5.1
Add 3 and 16.
19+2412
Step 5.2
Add 19 and 24.
4312
4312
Step 6
The result can be shown in multiple forms.
Exact Form:
4312
Decimal Form:
3.583
Mixed Number Form:
3712
 [x2  12  π  xdx ]