Trigonometry Examples

Simplify (tan(x)^2)/(sec(x)^2)+(cot(x)^2)/(csc(x)^2)
tan2(x)sec2(x)+cot2(x)csc2(x)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite tan2(x)sec2(x) as (tan(x)sec(x))2.
(tan(x)sec(x))2+cot2(x)csc2(x)
Step 1.2
Rewrite sec(x) in terms of sines and cosines.
(tan(x)1cos(x))2+cot2(x)csc2(x)
Step 1.3
Rewrite tan(x) in terms of sines and cosines.
(sin(x)cos(x)1cos(x))2+cot2(x)csc2(x)
Step 1.4
Multiply by the reciprocal of the fraction to divide by 1cos(x).
(sin(x)cos(x)cos(x))2+cot2(x)csc2(x)
Step 1.5
Write cos(x) as a fraction with denominator 1.
(sin(x)cos(x)cos(x)1)2+cot2(x)csc2(x)
Step 1.6
Cancel the common factor of cos(x).
Tap for more steps...
Step 1.6.1
Cancel the common factor.
(sin(x)cos(x)cos(x)1)2+cot2(x)csc2(x)
Step 1.6.2
Rewrite the expression.
sin2(x)+cot2(x)csc2(x)
sin2(x)+cot2(x)csc2(x)
Step 1.7
Rewrite cot2(x)csc2(x) as (cot(x)csc(x))2.
sin2(x)+(cot(x)csc(x))2
Step 1.8
Rewrite csc(x) in terms of sines and cosines.
sin2(x)+(cot(x)1sin(x))2
Step 1.9
Rewrite cot(x) in terms of sines and cosines.
sin2(x)+(cos(x)sin(x)1sin(x))2
Step 1.10
Multiply by the reciprocal of the fraction to divide by 1sin(x).
sin2(x)+(cos(x)sin(x)sin(x))2
Step 1.11
Write sin(x) as a fraction with denominator 1.
sin2(x)+(cos(x)sin(x)sin(x)1)2
Step 1.12
Cancel the common factor of sin(x).
Tap for more steps...
Step 1.12.1
Cancel the common factor.
sin2(x)+(cos(x)sin(x)sin(x)1)2
Step 1.12.2
Rewrite the expression.
sin2(x)+cos2(x)
sin2(x)+cos2(x)
sin2(x)+cos2(x)
Step 2
Apply pythagorean identity.
1
 [x2  12  π  xdx ]