Enter a problem...
Trigonometry Examples
1+sec(-x)sin(-x)+tan(-x)1+sec(−x)sin(−x)+tan(−x)
Step 1
Step 1.1
Since sec(-x)sec(−x) is an even function, rewrite sec(-x)sec(−x) as sec(x)sec(x).
1+sec(x)sin(-x)+tan(-x)1+sec(x)sin(−x)+tan(−x)
Step 1.2
Rewrite sec(x)sec(x) in terms of sines and cosines.
1+1cos(x)sin(-x)+tan(-x)1+1cos(x)sin(−x)+tan(−x)
1+1cos(x)sin(-x)+tan(-x)1+1cos(x)sin(−x)+tan(−x)
Step 2
Step 2.1
Since sin(-x)sin(−x) is an odd function, rewrite sin(-x)sin(−x) as -sin(x)−sin(x).
1+1cos(x)-sin(x)+tan(-x)1+1cos(x)−sin(x)+tan(−x)
Step 2.2
Since tan(-x)tan(−x) is an odd function, rewrite tan(-x)tan(−x) as -tan(x)−tan(x).
1+1cos(x)-sin(x)-tan(x)1+1cos(x)−sin(x)−tan(x)
Step 2.3
Rewrite tan(x)tan(x) in terms of sines and cosines.
1+1cos(x)-sin(x)-sin(x)cos(x)1+1cos(x)−sin(x)−sin(x)cos(x)
Step 2.4
Factor -sin(x)−sin(x) out of -sin(x)-sin(x)cos(x)−sin(x)−sin(x)cos(x).
Step 2.4.1
Factor -sin(x)−sin(x) out of -sin(x)−sin(x).
1+1cos(x)-sin(x)(1)-sin(x)cos(x)1+1cos(x)−sin(x)(1)−sin(x)cos(x)
Step 2.4.2
Factor -sin(x)−sin(x) out of -sin(x)cos(x)−sin(x)cos(x).
1+1cos(x)-sin(x)(1)-sin(x)(1cos(x))1+1cos(x)−sin(x)(1)−sin(x)(1cos(x))
Step 2.4.3
Factor -sin(x)−sin(x) out of -sin(x)(1)-sin(x)(1cos(x))−sin(x)(1)−sin(x)(1cos(x)).
1+1cos(x)-sin(x)(1+1cos(x))1+1cos(x)−sin(x)(1+1cos(x))
1+1cos(x)-sin(x)(1+1cos(x))1+1cos(x)−sin(x)(1+1cos(x))
1+1cos(x)-sin(x)(1+1cos(x))1+1cos(x)−sin(x)(1+1cos(x))
Step 3
Step 3.1
Cancel the common factor of 1+1cos(x)1+1cos(x).
Step 3.1.1
Cancel the common factor.
1+1cos(x)-sin(x)(1+1cos(x))
Step 3.1.2
Rewrite the expression.
1-sin(x)
1-sin(x)
Step 3.2
Cancel the common factor of 1 and -1.
Step 3.2.1
Rewrite 1 as -1(-1).
-1(-1)-sin(x)
Step 3.2.2
Move the negative in front of the fraction.
-1sin(x)
-1sin(x)
-1sin(x)
Step 4
Convert from 1sin(x) to csc(x).
-csc(x)