Enter a problem...
Trigonometry Examples
2+cos(a)tan(a)csc(a)sec(a)2+cos(a)tan(a)csc(a)sec(a)
Step 1
Step 1.1
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 1.1.1
Reorder cos(a)cos(a) and tan(a)tan(a).
2+tan(a)cos(a)csc(a)sec(a)2+tan(a)cos(a)csc(a)sec(a)
Step 1.1.2
Rewrite cos(a)tan(a)cos(a)tan(a) in terms of sines and cosines.
2+sin(a)cos(a)cos(a)csc(a)sec(a)2+sin(a)cos(a)cos(a)csc(a)sec(a)
Step 1.1.3
Cancel the common factors.
2+sin(a)csc(a)sec(a)2+sin(a)csc(a)sec(a)
2+sin(a)csc(a)sec(a)2+sin(a)csc(a)sec(a)
Step 1.2
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 1.2.1
Reorder sin(a)sin(a) and csc(a)csc(a).
2+csc(a)sin(a)sec(a)2+csc(a)sin(a)sec(a)
Step 1.2.2
Rewrite sin(a)csc(a)sin(a)csc(a) in terms of sines and cosines.
2+1sin(a)sin(a)sec(a)2+1sin(a)sin(a)sec(a)
Step 1.2.3
Cancel the common factors.
2+1sec(a)2+1sec(a)
2+1sec(a)2+1sec(a)
Step 1.3
Add 22 and 11.
3sec(a)3sec(a)
3sec(a)3sec(a)
Step 2
Rewrite sec(a)sec(a) in terms of sines and cosines.
31cos(a)31cos(a)
Step 3
Multiply the numerator by the reciprocal of the denominator.
3cos(a)3cos(a)