Trigonometry Examples

Solve for ? tan(x)=21/20
tan(x)=2120tan(x)=2120
Step 1
Take the inverse tangent of both sides of the equation to extract xx from inside the tangent.
x=arctan(2120)x=arctan(2120)
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
Evaluate arctan(2120)arctan(2120).
x=0.80978357x=0.80978357
x=0.80978357x=0.80978357
Step 3
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from ππ to find the solution in the fourth quadrant.
x=(3.14159265)+0.80978357x=(3.14159265)+0.80978357
Step 4
Solve for xx.
Tap for more steps...
Step 4.1
Remove parentheses.
x=3.14159265+0.80978357x=3.14159265+0.80978357
Step 4.2
Remove parentheses.
x=(3.14159265)+0.80978357x=(3.14159265)+0.80978357
Step 4.3
Add 3.141592653.14159265 and 0.809783570.80978357.
x=3.95137622x=3.95137622
x=3.95137622x=3.95137622
Step 5
Find the period of tan(x)tan(x).
Tap for more steps...
Step 5.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 5.2
Replace bb with 11 in the formula for period.
π|1|π|1|
Step 5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
π1π1
Step 5.4
Divide ππ by 1.
π
π
Step 6
The period of the tan(x) function is π so values will repeat every π radians in both directions.
x=0.80978357+πn,3.95137622+πn, for any integer n
Step 7
Consolidate 0.80978357+πn and 3.95137622+πn to 0.80978357+πn.
x=0.80978357+πn, for any integer n
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]