Enter a problem...
Trigonometry Examples
cos(2x)=√2-cos(2x)cos(2x)=√2−cos(2x)
Step 1
Step 1.1
Add cos(2x) to both sides of the equation.
cos(2x)+cos(2x)=√2
Step 1.2
Add cos(2x) and cos(2x).
2cos(2x)=√2
2cos(2x)=√2
Step 2
Step 2.1
Divide each term in 2cos(2x)=√2 by 2.
2cos(2x)2=√22
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 2.
Step 2.2.1.1
Cancel the common factor.
2cos(2x)2=√22
Step 2.2.1.2
Divide cos(2x) by 1.
cos(2x)=√22
cos(2x)=√22
cos(2x)=√22
cos(2x)=√22
Step 3
Take the inverse cosine of both sides of the equation to extract x from inside the cosine.
2x=arccos(√22)
Step 4
Step 4.1
The exact value of arccos(√22) is π4.
2x=π4
2x=π4
Step 5
Step 5.1
Divide each term in 2x=π4 by 2.
2x2=π42
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of 2.
Step 5.2.1.1
Cancel the common factor.
2x2=π42
Step 5.2.1.2
Divide x by 1.
x=π42
x=π42
x=π42
Step 5.3
Simplify the right side.
Step 5.3.1
Multiply the numerator by the reciprocal of the denominator.
x=π4⋅12
Step 5.3.2
Multiply π4⋅12.
Step 5.3.2.1
Multiply π4 by 12.
x=π4⋅2
Step 5.3.2.2
Multiply 4 by 2.
x=π8
x=π8
x=π8
x=π8
Step 6
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the fourth quadrant.
2x=2π-π4
Step 7
Step 7.1
Simplify.
Step 7.1.1
To write 2π as a fraction with a common denominator, multiply by 44.
2x=2π⋅44-π4
Step 7.1.2
Combine 2π and 44.
2x=2π⋅44-π4
Step 7.1.3
Combine the numerators over the common denominator.
2x=2π⋅4-π4
Step 7.1.4
Multiply 4 by 2.
2x=8π-π4
Step 7.1.5
Subtract π from 8π.
2x=7π4
2x=7π4
Step 7.2
Divide each term in 2x=7π4 by 2 and simplify.
Step 7.2.1
Divide each term in 2x=7π4 by 2.
2x2=7π42
Step 7.2.2
Simplify the left side.
Step 7.2.2.1
Cancel the common factor of 2.
Step 7.2.2.1.1
Cancel the common factor.
2x2=7π42
Step 7.2.2.1.2
Divide x by 1.
x=7π42
x=7π42
x=7π42
Step 7.2.3
Simplify the right side.
Step 7.2.3.1
Multiply the numerator by the reciprocal of the denominator.
x=7π4⋅12
Step 7.2.3.2
Multiply 7π4⋅12.
Step 7.2.3.2.1
Multiply 7π4 by 12.
x=7π4⋅2
Step 7.2.3.2.2
Multiply 4 by 2.
x=7π8
x=7π8
x=7π8
x=7π8
x=7π8
Step 8
Step 8.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 8.2
Replace b with 2 in the formula for period.
2π|2|
Step 8.3
The absolute value is the distance between a number and zero. The distance between 0 and 2 is 2.
2π2
Step 8.4
Cancel the common factor of 2.
Step 8.4.1
Cancel the common factor.
2π2
Step 8.4.2
Divide π by 1.
π
π
π
Step 9
The period of the cos(2x) function is π so values will repeat every π radians in both directions.
x=π8+πn,7π8+πn, for any integer n