Enter a problem...
Trigonometry Examples
cos(x)+1cos(x)-1=1+sec(x)1-sec(x)cos(x)+1cos(x)−1=1+sec(x)1−sec(x)
Step 1
Multiply both sides by cos(x)-1cos(x)−1.
cos(x)+1cos(x)-1(cos(x)-1)=1+sec(x)1-sec(x)(cos(x)-1)cos(x)+1cos(x)−1(cos(x)−1)=1+sec(x)1−sec(x)(cos(x)−1)
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Cancel the common factor of cos(x)-1cos(x)−1.
Step 2.1.1.1
Cancel the common factor.
cos(x)+1cos(x)-1(cos(x)-1)=1+sec(x)1-sec(x)(cos(x)-1)
Step 2.1.1.2
Rewrite the expression.
cos(x)+1=1+sec(x)1-sec(x)(cos(x)-1)
cos(x)+1=1+sec(x)1-sec(x)(cos(x)-1)
cos(x)+1=1+sec(x)1-sec(x)(cos(x)-1)
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify 1+sec(x)1-sec(x)(cos(x)-1).
Step 2.2.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)+1=1+1cos(x)1-sec(x)(cos(x)-1)
Step 2.2.1.2
Rewrite sec(x) in terms of sines and cosines.
cos(x)+1=1+1cos(x)1-1cos(x)(cos(x)-1)
Step 2.2.1.3
Multiply the numerator and denominator of the fraction by cos(x).
Step 2.2.1.3.1
Multiply 1+1cos(x)1-1cos(x) by cos(x)cos(x).
cos(x)+1=cos(x)cos(x)⋅1+1cos(x)1-1cos(x)(cos(x)-1)
Step 2.2.1.3.2
Combine.
cos(x)+1=cos(x)(1+1cos(x))cos(x)(1-1cos(x))(cos(x)-1)
cos(x)+1=cos(x)(1+1cos(x))cos(x)(1-1cos(x))(cos(x)-1)
Step 2.2.1.4
Apply the distributive property.
cos(x)+1=cos(x)⋅1+cos(x)1cos(x)cos(x)⋅1+cos(x)(-1cos(x))(cos(x)-1)
Step 2.2.1.5
Simplify by cancelling.
Step 2.2.1.5.1
Cancel the common factor of cos(x).
Step 2.2.1.5.1.1
Cancel the common factor.
cos(x)+1=cos(x)⋅1+cos(x)1cos(x)cos(x)⋅1+cos(x)(-1cos(x))(cos(x)-1)
Step 2.2.1.5.1.2
Rewrite the expression.
cos(x)+1=cos(x)⋅1+1cos(x)⋅1+cos(x)(-1cos(x))(cos(x)-1)
cos(x)+1=cos(x)⋅1+1cos(x)⋅1+cos(x)(-1cos(x))(cos(x)-1)
Step 2.2.1.5.2
Cancel the common factor of cos(x).
Step 2.2.1.5.2.1
Move the leading negative in -1cos(x) into the numerator.
cos(x)+1=cos(x)⋅1+1cos(x)⋅1+cos(x)-1cos(x)(cos(x)-1)
Step 2.2.1.5.2.2
Cancel the common factor.
cos(x)+1=cos(x)⋅1+1cos(x)⋅1+cos(x)-1cos(x)(cos(x)-1)
Step 2.2.1.5.2.3
Rewrite the expression.
cos(x)+1=cos(x)⋅1+1cos(x)⋅1-1(cos(x)-1)
cos(x)+1=cos(x)⋅1+1cos(x)⋅1-1(cos(x)-1)
cos(x)+1=cos(x)⋅1+1cos(x)⋅1-1(cos(x)-1)
Step 2.2.1.6
Reduce the expression by cancelling the common factors.
Step 2.2.1.6.1
Multiply cos(x) by 1.
cos(x)+1=cos(x)+1cos(x)⋅1-1(cos(x)-1)
Step 2.2.1.6.2
Multiply cos(x) by 1.
cos(x)+1=cos(x)+1cos(x)-1(cos(x)-1)
Step 2.2.1.6.3
Cancel the common factor of cos(x)-1.
Step 2.2.1.6.3.1
Cancel the common factor.
cos(x)+1=cos(x)+1cos(x)-1(cos(x)-1)
Step 2.2.1.6.3.2
Rewrite the expression.
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
Step 3
Step 3.1
Move all terms containing cos(x) to the left side of the equation.
Step 3.1.1
Subtract cos(x) from both sides of the equation.
cos(x)+1-cos(x)=1
Step 3.1.2
Combine the opposite terms in cos(x)+1-cos(x).
Step 3.1.2.1
Subtract cos(x) from cos(x).
0+1=1
Step 3.1.2.2
Add 0 and 1.
1=1
1=1
1=1
Step 3.2
Since 1=1, the equation will always be true for any value of x.
All real numbers
All real numbers
Step 4
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-∞,∞)