Trigonometry Examples

Solve for ? (cos(x)+1)/(cos(x)-1)=(1+sec(x))/(1-sec(x))
cos(x)+1cos(x)-1=1+sec(x)1-sec(x)cos(x)+1cos(x)1=1+sec(x)1sec(x)
Step 1
Multiply both sides by cos(x)-1cos(x)1.
cos(x)+1cos(x)-1(cos(x)-1)=1+sec(x)1-sec(x)(cos(x)-1)cos(x)+1cos(x)1(cos(x)1)=1+sec(x)1sec(x)(cos(x)1)
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Cancel the common factor of cos(x)-1cos(x)1.
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
cos(x)+1cos(x)-1(cos(x)-1)=1+sec(x)1-sec(x)(cos(x)-1)
Step 2.1.1.2
Rewrite the expression.
cos(x)+1=1+sec(x)1-sec(x)(cos(x)-1)
cos(x)+1=1+sec(x)1-sec(x)(cos(x)-1)
cos(x)+1=1+sec(x)1-sec(x)(cos(x)-1)
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Simplify 1+sec(x)1-sec(x)(cos(x)-1).
Tap for more steps...
Step 2.2.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)+1=1+1cos(x)1-sec(x)(cos(x)-1)
Step 2.2.1.2
Rewrite sec(x) in terms of sines and cosines.
cos(x)+1=1+1cos(x)1-1cos(x)(cos(x)-1)
Step 2.2.1.3
Multiply the numerator and denominator of the fraction by cos(x).
Tap for more steps...
Step 2.2.1.3.1
Multiply 1+1cos(x)1-1cos(x) by cos(x)cos(x).
cos(x)+1=cos(x)cos(x)1+1cos(x)1-1cos(x)(cos(x)-1)
Step 2.2.1.3.2
Combine.
cos(x)+1=cos(x)(1+1cos(x))cos(x)(1-1cos(x))(cos(x)-1)
cos(x)+1=cos(x)(1+1cos(x))cos(x)(1-1cos(x))(cos(x)-1)
Step 2.2.1.4
Apply the distributive property.
cos(x)+1=cos(x)1+cos(x)1cos(x)cos(x)1+cos(x)(-1cos(x))(cos(x)-1)
Step 2.2.1.5
Simplify by cancelling.
Tap for more steps...
Step 2.2.1.5.1
Cancel the common factor of cos(x).
Tap for more steps...
Step 2.2.1.5.1.1
Cancel the common factor.
cos(x)+1=cos(x)1+cos(x)1cos(x)cos(x)1+cos(x)(-1cos(x))(cos(x)-1)
Step 2.2.1.5.1.2
Rewrite the expression.
cos(x)+1=cos(x)1+1cos(x)1+cos(x)(-1cos(x))(cos(x)-1)
cos(x)+1=cos(x)1+1cos(x)1+cos(x)(-1cos(x))(cos(x)-1)
Step 2.2.1.5.2
Cancel the common factor of cos(x).
Tap for more steps...
Step 2.2.1.5.2.1
Move the leading negative in -1cos(x) into the numerator.
cos(x)+1=cos(x)1+1cos(x)1+cos(x)-1cos(x)(cos(x)-1)
Step 2.2.1.5.2.2
Cancel the common factor.
cos(x)+1=cos(x)1+1cos(x)1+cos(x)-1cos(x)(cos(x)-1)
Step 2.2.1.5.2.3
Rewrite the expression.
cos(x)+1=cos(x)1+1cos(x)1-1(cos(x)-1)
cos(x)+1=cos(x)1+1cos(x)1-1(cos(x)-1)
cos(x)+1=cos(x)1+1cos(x)1-1(cos(x)-1)
Step 2.2.1.6
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.2.1.6.1
Multiply cos(x) by 1.
cos(x)+1=cos(x)+1cos(x)1-1(cos(x)-1)
Step 2.2.1.6.2
Multiply cos(x) by 1.
cos(x)+1=cos(x)+1cos(x)-1(cos(x)-1)
Step 2.2.1.6.3
Cancel the common factor of cos(x)-1.
Tap for more steps...
Step 2.2.1.6.3.1
Cancel the common factor.
cos(x)+1=cos(x)+1cos(x)-1(cos(x)-1)
Step 2.2.1.6.3.2
Rewrite the expression.
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
cos(x)+1=cos(x)+1
Step 3
Solve for x.
Tap for more steps...
Step 3.1
Move all terms containing cos(x) to the left side of the equation.
Tap for more steps...
Step 3.1.1
Subtract cos(x) from both sides of the equation.
cos(x)+1-cos(x)=1
Step 3.1.2
Combine the opposite terms in cos(x)+1-cos(x).
Tap for more steps...
Step 3.1.2.1
Subtract cos(x) from cos(x).
0+1=1
Step 3.1.2.2
Add 0 and 1.
1=1
1=1
1=1
Step 3.2
Since 1=1, the equation will always be true for any value of x.
All real numbers
All real numbers
Step 4
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-,)
 [x2  12  π  xdx ]