Enter a problem...
Trigonometry Examples
1sec(x)-tan(x)=sec(x)+tan(x)1sec(x)−tan(x)=sec(x)+tan(x)
Step 1
Step 1.1
Simplify the denominator.
Step 1.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-tan(x)=sec(x)+tan(x)
Step 1.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 2.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 3
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 4
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 5
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 6
Step 6.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 6.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 7
Step 7.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 7.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 8
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 9
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)1⋅1cos(x)=1cos(x)+sin(x)cos(x)
Step 10
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 11
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 12
Step 12.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 12.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 13
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 14
Step 14.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 14.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 15
Step 15.1
Simplify cos(x)sec(x)sec(x)-tan(x).
Step 15.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 15.1.2
Simplify the denominator.
Step 15.1.2.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-tan(x)=sec(x)+tan(x)
Step 15.1.2.2
Rewrite tan(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.3
Combine cos(x) and 1cos(x).
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.4
Reduce the expression by cancelling the common factors.
Step 15.1.4.1
Reduce the expression cos(x)cos(x) by cancelling the common factors.
Step 15.1.4.1.1
Cancel the common factor.
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.4.1.2
Rewrite the expression.
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.4.2
Rewrite the expression.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 16
Step 16.1
Simplify each term.
Step 16.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 16.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 17
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 18
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 19
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 20
Step 20.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 20.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 21
Step 21.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 21.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 22
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 23
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)1⋅1cos(x)=1cos(x)+sin(x)cos(x)
Step 24
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 25
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 26
Step 26.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 26.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 27
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 28
Step 28.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 28.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 29
Step 29.1
Simplify cos(x)sec(x)sec(x)-tan(x).
Step 29.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 29.1.2
Simplify the denominator.
Step 29.1.2.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-tan(x)=sec(x)+tan(x)
Step 29.1.2.2
Rewrite tan(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.3
Combine cos(x) and 1cos(x).
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.4
Reduce the expression by cancelling the common factors.
Step 29.1.4.1
Reduce the expression cos(x)cos(x) by cancelling the common factors.
Step 29.1.4.1.1
Cancel the common factor.
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.4.1.2
Rewrite the expression.
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.4.2
Rewrite the expression.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 30
Step 30.1
Simplify each term.
Step 30.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 30.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 31
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 32
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 33
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 34
Step 34.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 34.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 35
Step 35.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 35.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 36
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 37
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)1⋅1cos(x)=1cos(x)+sin(x)cos(x)
Step 38
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 39
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 40
Step 40.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 40.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 41
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 42
Step 42.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 42.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 43
Step 43.1
Simplify cos(x)sec(x)sec(x)-tan(x).
Step 43.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 43.1.2
Simplify the denominator.
Step 43.1.2.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-tan(x)=sec(x)+tan(x)
Step 43.1.2.2
Rewrite tan(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.3
Combine cos(x) and 1cos(x).
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.4
Reduce the expression by cancelling the common factors.
Step 43.1.4.1
Reduce the expression cos(x)cos(x) by cancelling the common factors.
Step 43.1.4.1.1
Cancel the common factor.
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.4.1.2
Rewrite the expression.
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.4.2
Rewrite the expression.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 44
Step 44.1
Simplify each term.
Step 44.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 44.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 45
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 46
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 47
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 48
Step 48.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 48.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 49
Step 49.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 49.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 50
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 51
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)1⋅1cos(x)=1cos(x)+sin(x)cos(x)
Step 52
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 53
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 54
Step 54.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 54.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)⋅sec(x)=1cos(x)+sin(x)cos(x)
Step 55
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 56
Step 56.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 56.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 57
Multiply both sides by sec(x)-tan(x).
cos(x)sec(x)sec(x)-tan(x)(sec(x)-tan(x))=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58
Step 58.1
Simplify the left side.
Step 58.1.1
Simplify cos(x)sec(x)sec(x)-tan(x)(sec(x)-tan(x)).
Step 58.1.1.1
Cancel the common factor of sec(x)-tan(x).
Step 58.1.1.1.1
Cancel the common factor.
cos(x)sec(x)sec(x)-tan(x)(sec(x)-tan(x))=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.1.2
Rewrite the expression.
cos(x)sec(x)=(sec(x)+tan(x))(sec(x)-tan(x))
cos(x)sec(x)=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.2
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 58.1.1.2.1
Reorder cos(x) and sec(x).
sec(x)cos(x)=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.2.2
Rewrite cos(x)sec(x) in terms of sines and cosines.
1cos(x)cos(x)=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.2.3
Cancel the common factors.
1=(sec(x)+tan(x))(sec(x)-tan(x))
1=(sec(x)+tan(x))(sec(x)-tan(x))
1=(sec(x)+tan(x))(sec(x)-tan(x))
1=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.2
Simplify the right side.
Step 58.2.1
Simplify (sec(x)+tan(x))(sec(x)-tan(x)).
Step 58.2.1.1
Expand (sec(x)+tan(x))(sec(x)-tan(x)) using the FOIL Method.
Step 58.2.1.1.1
Apply the distributive property.
1=sec(x)(sec(x)-tan(x))+tan(x)(sec(x)-tan(x))
Step 58.2.1.1.2
Apply the distributive property.
1=sec(x)sec(x)+sec(x)(-tan(x))+tan(x)(sec(x)-tan(x))
Step 58.2.1.1.3
Apply the distributive property.
1=sec(x)sec(x)+sec(x)(-tan(x))+tan(x)sec(x)+tan(x)(-tan(x))
1=sec(x)sec(x)+sec(x)(-tan(x))+tan(x)sec(x)+tan(x)(-tan(x))
Step 58.2.1.2
Simplify terms.
Step 58.2.1.2.1
Combine the opposite terms in sec(x)sec(x)+sec(x)(-tan(x))+tan(x)sec(x)+tan(x)(-tan(x)).
Step 58.2.1.2.1.1
Reorder the factors in the terms sec(x)(-tan(x)) and tan(x)sec(x).
1=sec(x)sec(x)-sec(x)tan(x)+sec(x)tan(x)+tan(x)(-tan(x))
Step 58.2.1.2.1.2
Add -sec(x)tan(x) and sec(x)tan(x).
1=sec(x)sec(x)+0+tan(x)(-tan(x))
Step 58.2.1.2.1.3
Add sec(x)sec(x) and 0.
1=sec(x)sec(x)+tan(x)(-tan(x))
1=sec(x)sec(x)+tan(x)(-tan(x))
Step 58.2.1.2.2
Simplify each term.
Step 58.2.1.2.2.1
Multiply sec(x)sec(x).
Step 58.2.1.2.2.1.1
Raise sec(x) to the power of 1.
1=sec1(x)sec(x)+tan(x)(-tan(x))
Step 58.2.1.2.2.1.2
Raise sec(x) to the power of 1.
1=sec1(x)sec1(x)+tan(x)(-tan(x))
Step 58.2.1.2.2.1.3
Use the power rule aman=am+n to combine exponents.
1=sec(x)1+1+tan(x)(-tan(x))
Step 58.2.1.2.2.1.4
Add 1 and 1.
1=sec2(x)+tan(x)(-tan(x))
1=sec2(x)+tan(x)(-tan(x))
Step 58.2.1.2.2.2
Rewrite using the commutative property of multiplication.
1=sec2(x)-tan(x)tan(x)
Step 58.2.1.2.2.3
Multiply -tan(x)tan(x).
Step 58.2.1.2.2.3.1
Raise tan(x) to the power of 1.
1=sec2(x)-(tan1(x)tan(x))
Step 58.2.1.2.2.3.2
Raise tan(x) to the power of 1.
1=sec2(x)-(tan1(x)tan1(x))
Step 58.2.1.2.2.3.3
Use the power rule aman=am+n to combine exponents.
1=sec2(x)-tan(x)1+1
Step 58.2.1.2.2.3.4
Add 1 and 1.
1=sec2(x)-tan2(x)
1=sec2(x)-tan2(x)
1=sec2(x)-tan2(x)
1=sec2(x)-tan2(x)
Step 58.2.1.3
Apply pythagorean identity.
1=1
1=1
1=1
1=1
Step 59
Since 1=1, the equation will always be true for any value of x.
All real numbers
Step 60
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-∞,∞)