Trigonometry Examples

Solve for ? 1/(sec(x)-tan(x))=sec(x)+tan(x)
1sec(x)-tan(x)=sec(x)+tan(x)1sec(x)tan(x)=sec(x)+tan(x)
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Simplify the denominator.
Tap for more steps...
Step 1.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-tan(x)=sec(x)+tan(x)
Step 1.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 2.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 3
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 4
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 5
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 6
Cancel the common factor of cos(x).
Tap for more steps...
Step 6.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 6.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 7
Cancel the common factor of cos(x).
Tap for more steps...
Step 7.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 7.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 8
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 9
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)11cos(x)=1cos(x)+sin(x)cos(x)
Step 10
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1sec(x)=1cos(x)+sin(x)cos(x)
Step 11
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 12
Simplify the denominator.
Tap for more steps...
Step 12.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 12.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 13
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 14
Simplify each term.
Tap for more steps...
Step 14.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 14.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 15
Simplify the left side.
Tap for more steps...
Step 15.1
Simplify cos(x)sec(x)sec(x)-tan(x).
Tap for more steps...
Step 15.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 15.1.2
Simplify the denominator.
Tap for more steps...
Step 15.1.2.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-tan(x)=sec(x)+tan(x)
Step 15.1.2.2
Rewrite tan(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.3
Combine cos(x) and 1cos(x).
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 15.1.4.1
Reduce the expression cos(x)cos(x) by cancelling the common factors.
Tap for more steps...
Step 15.1.4.1.1
Cancel the common factor.
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.4.1.2
Rewrite the expression.
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 15.1.4.2
Rewrite the expression.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 16
Simplify the right side.
Tap for more steps...
Step 16.1
Simplify each term.
Tap for more steps...
Step 16.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 16.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 17
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 18
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 19
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 20
Cancel the common factor of cos(x).
Tap for more steps...
Step 20.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 20.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 21
Cancel the common factor of cos(x).
Tap for more steps...
Step 21.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 21.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 22
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 23
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)11cos(x)=1cos(x)+sin(x)cos(x)
Step 24
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1sec(x)=1cos(x)+sin(x)cos(x)
Step 25
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 26
Simplify the denominator.
Tap for more steps...
Step 26.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 26.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 27
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 28
Simplify each term.
Tap for more steps...
Step 28.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 28.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 29
Simplify the left side.
Tap for more steps...
Step 29.1
Simplify cos(x)sec(x)sec(x)-tan(x).
Tap for more steps...
Step 29.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 29.1.2
Simplify the denominator.
Tap for more steps...
Step 29.1.2.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-tan(x)=sec(x)+tan(x)
Step 29.1.2.2
Rewrite tan(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.3
Combine cos(x) and 1cos(x).
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 29.1.4.1
Reduce the expression cos(x)cos(x) by cancelling the common factors.
Tap for more steps...
Step 29.1.4.1.1
Cancel the common factor.
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.4.1.2
Rewrite the expression.
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 29.1.4.2
Rewrite the expression.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 30
Simplify the right side.
Tap for more steps...
Step 30.1
Simplify each term.
Tap for more steps...
Step 30.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 30.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 31
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 32
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 33
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 34
Cancel the common factor of cos(x).
Tap for more steps...
Step 34.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 34.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 35
Cancel the common factor of cos(x).
Tap for more steps...
Step 35.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 35.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 36
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 37
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)11cos(x)=1cos(x)+sin(x)cos(x)
Step 38
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1sec(x)=1cos(x)+sin(x)cos(x)
Step 39
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 40
Simplify the denominator.
Tap for more steps...
Step 40.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 40.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 41
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 42
Simplify each term.
Tap for more steps...
Step 42.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 42.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 43
Simplify the left side.
Tap for more steps...
Step 43.1
Simplify cos(x)sec(x)sec(x)-tan(x).
Tap for more steps...
Step 43.1.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 43.1.2
Simplify the denominator.
Tap for more steps...
Step 43.1.2.1
Rewrite sec(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-tan(x)=sec(x)+tan(x)
Step 43.1.2.2
Rewrite tan(x) in terms of sines and cosines.
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
cos(x)1cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.3
Combine cos(x) and 1cos(x).
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 43.1.4.1
Reduce the expression cos(x)cos(x) by cancelling the common factors.
Tap for more steps...
Step 43.1.4.1.1
Cancel the common factor.
cos(x)cos(x)1cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.4.1.2
Rewrite the expression.
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
111cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 43.1.4.2
Rewrite the expression.
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
11cos(x)-sin(x)cos(x)=sec(x)+tan(x)
Step 44
Simplify the right side.
Tap for more steps...
Step 44.1
Simplify each term.
Tap for more steps...
Step 44.1.1
Rewrite sec(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+tan(x)
Step 44.1.2
Rewrite tan(x) in terms of sines and cosines.
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
11cos(x)-sin(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 45
Multiply both sides of the equation by cos(x).
cos(x)11cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 46
Combine cos(x) and 11cos(x)-sin(x)cos(x).
cos(x)1cos(x)-sin(x)cos(x)=cos(x)(1cos(x)+sin(x)cos(x))
Step 47
Apply the distributive property.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 48
Cancel the common factor of cos(x).
Tap for more steps...
Step 48.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=cos(x)1cos(x)+cos(x)sin(x)cos(x)
Step 48.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 49
Cancel the common factor of cos(x).
Tap for more steps...
Step 49.1
Cancel the common factor.
cos(x)1cos(x)-sin(x)cos(x)=1+cos(x)sin(x)cos(x)
Step 49.2
Rewrite the expression.
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
cos(x)1cos(x)-sin(x)cos(x)=1+sin(x)
Step 50
Divide each term in the equation by cos(x).
cos(x)1cos(x)-sin(x)cos(x)cos(x)=1cos(x)+sin(x)cos(x)
Step 51
Separate fractions.
cos(x)1cos(x)-sin(x)cos(x)11cos(x)=1cos(x)+sin(x)cos(x)
Step 52
Convert from 1cos(x) to sec(x).
cos(x)1cos(x)-sin(x)cos(x)1sec(x)=1cos(x)+sin(x)cos(x)
Step 53
Divide cos(x)1cos(x)-sin(x)cos(x) by 1.
cos(x)1cos(x)-sin(x)cos(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 54
Simplify the denominator.
Tap for more steps...
Step 54.1
Convert from sin(x)cos(x) to tan(x).
cos(x)1cos(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 54.2
Convert from 1cos(x) to sec(x).
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
cos(x)sec(x)-tan(x)sec(x)=1cos(x)+sin(x)cos(x)
Step 55
Combine cos(x)sec(x)-tan(x) and sec(x).
cos(x)sec(x)sec(x)-tan(x)=1cos(x)+sin(x)cos(x)
Step 56
Simplify each term.
Tap for more steps...
Step 56.1
Convert from 1cos(x) to sec(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+sin(x)cos(x)
Step 56.2
Convert from sin(x)cos(x) to tan(x).
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
cos(x)sec(x)sec(x)-tan(x)=sec(x)+tan(x)
Step 57
Multiply both sides by sec(x)-tan(x).
cos(x)sec(x)sec(x)-tan(x)(sec(x)-tan(x))=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58
Simplify.
Tap for more steps...
Step 58.1
Simplify the left side.
Tap for more steps...
Step 58.1.1
Simplify cos(x)sec(x)sec(x)-tan(x)(sec(x)-tan(x)).
Tap for more steps...
Step 58.1.1.1
Cancel the common factor of sec(x)-tan(x).
Tap for more steps...
Step 58.1.1.1.1
Cancel the common factor.
cos(x)sec(x)sec(x)-tan(x)(sec(x)-tan(x))=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.1.2
Rewrite the expression.
cos(x)sec(x)=(sec(x)+tan(x))(sec(x)-tan(x))
cos(x)sec(x)=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.2
Rewrite in terms of sines and cosines, then cancel the common factors.
Tap for more steps...
Step 58.1.1.2.1
Reorder cos(x) and sec(x).
sec(x)cos(x)=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.2.2
Rewrite cos(x)sec(x) in terms of sines and cosines.
1cos(x)cos(x)=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.1.1.2.3
Cancel the common factors.
1=(sec(x)+tan(x))(sec(x)-tan(x))
1=(sec(x)+tan(x))(sec(x)-tan(x))
1=(sec(x)+tan(x))(sec(x)-tan(x))
1=(sec(x)+tan(x))(sec(x)-tan(x))
Step 58.2
Simplify the right side.
Tap for more steps...
Step 58.2.1
Simplify (sec(x)+tan(x))(sec(x)-tan(x)).
Tap for more steps...
Step 58.2.1.1
Expand (sec(x)+tan(x))(sec(x)-tan(x)) using the FOIL Method.
Tap for more steps...
Step 58.2.1.1.1
Apply the distributive property.
1=sec(x)(sec(x)-tan(x))+tan(x)(sec(x)-tan(x))
Step 58.2.1.1.2
Apply the distributive property.
1=sec(x)sec(x)+sec(x)(-tan(x))+tan(x)(sec(x)-tan(x))
Step 58.2.1.1.3
Apply the distributive property.
1=sec(x)sec(x)+sec(x)(-tan(x))+tan(x)sec(x)+tan(x)(-tan(x))
1=sec(x)sec(x)+sec(x)(-tan(x))+tan(x)sec(x)+tan(x)(-tan(x))
Step 58.2.1.2
Simplify terms.
Tap for more steps...
Step 58.2.1.2.1
Combine the opposite terms in sec(x)sec(x)+sec(x)(-tan(x))+tan(x)sec(x)+tan(x)(-tan(x)).
Tap for more steps...
Step 58.2.1.2.1.1
Reorder the factors in the terms sec(x)(-tan(x)) and tan(x)sec(x).
1=sec(x)sec(x)-sec(x)tan(x)+sec(x)tan(x)+tan(x)(-tan(x))
Step 58.2.1.2.1.2
Add -sec(x)tan(x) and sec(x)tan(x).
1=sec(x)sec(x)+0+tan(x)(-tan(x))
Step 58.2.1.2.1.3
Add sec(x)sec(x) and 0.
1=sec(x)sec(x)+tan(x)(-tan(x))
1=sec(x)sec(x)+tan(x)(-tan(x))
Step 58.2.1.2.2
Simplify each term.
Tap for more steps...
Step 58.2.1.2.2.1
Multiply sec(x)sec(x).
Tap for more steps...
Step 58.2.1.2.2.1.1
Raise sec(x) to the power of 1.
1=sec1(x)sec(x)+tan(x)(-tan(x))
Step 58.2.1.2.2.1.2
Raise sec(x) to the power of 1.
1=sec1(x)sec1(x)+tan(x)(-tan(x))
Step 58.2.1.2.2.1.3
Use the power rule aman=am+n to combine exponents.
1=sec(x)1+1+tan(x)(-tan(x))
Step 58.2.1.2.2.1.4
Add 1 and 1.
1=sec2(x)+tan(x)(-tan(x))
1=sec2(x)+tan(x)(-tan(x))
Step 58.2.1.2.2.2
Rewrite using the commutative property of multiplication.
1=sec2(x)-tan(x)tan(x)
Step 58.2.1.2.2.3
Multiply -tan(x)tan(x).
Tap for more steps...
Step 58.2.1.2.2.3.1
Raise tan(x) to the power of 1.
1=sec2(x)-(tan1(x)tan(x))
Step 58.2.1.2.2.3.2
Raise tan(x) to the power of 1.
1=sec2(x)-(tan1(x)tan1(x))
Step 58.2.1.2.2.3.3
Use the power rule aman=am+n to combine exponents.
1=sec2(x)-tan(x)1+1
Step 58.2.1.2.2.3.4
Add 1 and 1.
1=sec2(x)-tan2(x)
1=sec2(x)-tan2(x)
1=sec2(x)-tan2(x)
1=sec2(x)-tan2(x)
Step 58.2.1.3
Apply pythagorean identity.
1=1
1=1
1=1
1=1
Step 59
Since 1=1, the equation will always be true for any value of x.
All real numbers
Step 60
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-,)
 [x2  12  π  xdx ]