Enter a problem...
Trigonometry Examples
y=-32⋅cos(32x)y=−32⋅cos(32x)
Step 1
Use the form acos(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=-32
b=32
c=0
d=0
Step 2
Find the amplitude |a|.
Amplitude: 32
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2
Replace b with 32 in the formula for period.
2π|32|
Step 3.3
32 is approximately 1.5 which is positive so remove the absolute value
2π32
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
2π23
Step 3.5
Multiply 2π23.
Step 3.5.1
Combine 23 and 2.
2⋅23π
Step 3.5.2
Multiply 2 by 2.
43π
Step 3.5.3
Combine 43 and π.
4π3
4π3
4π3
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 032
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 0(23)
Step 4.4
Multiply 0 by 23.
Phase Shift: 0
Phase Shift: 0
Step 5
List the properties of the trigonometric function.
Amplitude: 32
Period: 4π3
Phase Shift: None
Vertical Shift: None
Step 6
Step 6.1
Find the point at x=0.
Step 6.1.1
Replace the variable x with 0 in the expression.
f(0)=-3cos(3(0)2)2
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Cancel the common factor of 0 and 2.
Step 6.1.2.1.1
Factor 2 out of 3(0).
f(0)=-3cos(2(3⋅(0))2)2
Step 6.1.2.1.2
Cancel the common factors.
Step 6.1.2.1.2.1
Factor 2 out of 2.
f(0)=-3cos(2(3⋅(0))2(1))2
Step 6.1.2.1.2.2
Cancel the common factor.
f(0)=-3cos(2(3⋅(0))2⋅1)2
Step 6.1.2.1.2.3
Rewrite the expression.
f(0)=-3cos(3⋅(0)1)2
Step 6.1.2.1.2.4
Divide 3⋅(0) by 1.
f(0)=-3cos(3⋅(0))2
f(0)=-3cos(3⋅(0))2
f(0)=-3cos(3⋅(0))2
Step 6.1.2.2
Simplify the numerator.
Step 6.1.2.2.1
Multiply 3 by 0.
f(0)=-3cos(0)2
Step 6.1.2.2.2
The exact value of cos(0) is 1.
f(0)=-3⋅12
f(0)=-3⋅12
Step 6.1.2.3
Multiply 3 by 1.
f(0)=-32
Step 6.1.2.4
The final answer is -32.
-32
-32
-32
Step 6.2
Find the point at x=π3.
Step 6.2.1
Replace the variable x with π3 in the expression.
f(π3)=-3cos(3(π3)2)2
Step 6.2.2
Simplify the result.
Step 6.2.2.1
Combine 3 and π3.
f(π3)=-3cos(3π32)2
Step 6.2.2.2
Reduce the expression by cancelling the common factors.
Step 6.2.2.2.1
Reduce the expression 3π3 by cancelling the common factors.
Step 6.2.2.2.1.1
Cancel the common factor.
f(π3)=-3cos(3π32)2
Step 6.2.2.2.1.2
Rewrite the expression.
f(π3)=-3cos(π12)2
f(π3)=-3cos(π12)2
Step 6.2.2.2.2
Divide π by 1.
f(π3)=-3cos(π2)2
f(π3)=-3cos(π2)2
Step 6.2.2.3
The exact value of cos(π2) is 0.
f(π3)=-3⋅02
Step 6.2.2.4
Multiply 3 by 0.
f(π3)=-02
Step 6.2.2.5
Divide 0 by 2.
f(π3)=-0
Step 6.2.2.6
Multiply -1 by 0.
f(π3)=0
Step 6.2.2.7
The final answer is 0.
0
0
0
Step 6.3
Find the point at x=2π3.
Step 6.3.1
Replace the variable x with 2π3 in the expression.
f(2π3)=-3cos(3(2π3)2)2
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Combine 3 and 2π3.
f(2π3)=-3cos(3(2π)32)2
Step 6.3.2.2
Multiply 3 by 2.
f(2π3)=-3cos(6π32)2
Step 6.3.2.3
Reduce the expression by cancelling the common factors.
Step 6.3.2.3.1
Reduce the expression 6π3 by cancelling the common factors.
Step 6.3.2.3.1.1
Factor 3 out of 6π.
f(2π3)=-3cos(3(2π)32)2
Step 6.3.2.3.1.2
Factor 3 out of 3.
f(2π3)=-3cos(3(2π)3(1)2)2
Step 6.3.2.3.1.3
Cancel the common factor.
f(2π3)=-3cos(3(2π)3⋅12)2
Step 6.3.2.3.1.4
Rewrite the expression.
f(2π3)=-3cos(2π12)2
f(2π3)=-3cos(2π12)2
Step 6.3.2.3.2
Divide 2π by 1.
f(2π3)=-3cos(2π2)2
f(2π3)=-3cos(2π2)2
Step 6.3.2.4
Simplify the numerator.
Step 6.3.2.4.1
Cancel the common factor of 2.
Step 6.3.2.4.1.1
Cancel the common factor.
f(2π3)=-3cos(2π2)2
Step 6.3.2.4.1.2
Divide π by 1.
f(2π3)=-3cos(π)2
f(2π3)=-3cos(π)2
Step 6.3.2.4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
f(2π3)=-3(-cos(0))2
Step 6.3.2.4.3
The exact value of cos(0) is 1.
f(2π3)=-3(-1⋅1)2
Step 6.3.2.4.4
Multiply -1 by 1.
f(2π3)=-3⋅-12
f(2π3)=-3⋅-12
Step 6.3.2.5
Simplify the expression.
Step 6.3.2.5.1
Multiply 3 by -1.
f(2π3)=--32
Step 6.3.2.5.2
Move the negative in front of the fraction.
f(2π3)=32
f(2π3)=32
Step 6.3.2.6
The final answer is 32.
32
32
32
Step 6.4
Find the point at x=π.
Step 6.4.1
Replace the variable x with π in the expression.
f(π)=-3cos(3(π)2)2
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Simplify the numerator.
Step 6.4.2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(π)=-3cos(π2)2
Step 6.4.2.1.2
The exact value of cos(π2) is 0.
f(π)=-3⋅02
f(π)=-3⋅02
Step 6.4.2.2
Simplify the expression.
Step 6.4.2.2.1
Multiply 3 by 0.
f(π)=-02
Step 6.4.2.2.2
Divide 0 by 2.
f(π)=-0
Step 6.4.2.2.3
Multiply -1 by 0.
f(π)=0
f(π)=0
Step 6.4.2.3
The final answer is 0.
0
0
0
Step 6.5
Find the point at x=4π3.
Step 6.5.1
Replace the variable x with 4π3 in the expression.
f(4π3)=-3cos(3(4π3)2)2
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Combine 3 and 4π3.
f(4π3)=-3cos(3(4π)32)2
Step 6.5.2.2
Multiply 3 by 4.
f(4π3)=-3cos(12π32)2
Step 6.5.2.3
Reduce the expression by cancelling the common factors.
Step 6.5.2.3.1
Reduce the expression 12π3 by cancelling the common factors.
Step 6.5.2.3.1.1
Factor 3 out of 12π.
f(4π3)=-3cos(3(4π)32)2
Step 6.5.2.3.1.2
Factor 3 out of 3.
f(4π3)=-3cos(3(4π)3(1)2)2
Step 6.5.2.3.1.3
Cancel the common factor.
f(4π3)=-3cos(3(4π)3⋅12)2
Step 6.5.2.3.1.4
Rewrite the expression.
f(4π3)=-3cos(4π12)2
f(4π3)=-3cos(4π12)2
Step 6.5.2.3.2
Divide 4π by 1.
f(4π3)=-3cos(4π2)2
f(4π3)=-3cos(4π2)2
Step 6.5.2.4
Simplify the numerator.
Step 6.5.2.4.1
Cancel the common factor of 4 and 2.
Step 6.5.2.4.1.1
Factor 2 out of 4π.
f(4π3)=-3cos(2(2π)2)2
Step 6.5.2.4.1.2
Cancel the common factors.
Step 6.5.2.4.1.2.1
Factor 2 out of 2.
f(4π3)=-3cos(2(2π)2(1))2
Step 6.5.2.4.1.2.2
Cancel the common factor.
f(4π3)=-3cos(2(2π)2⋅1)2
Step 6.5.2.4.1.2.3
Rewrite the expression.
f(4π3)=-3cos(2π1)2
Step 6.5.2.4.1.2.4
Divide 2π by 1.
f(4π3)=-3cos(2π)2
f(4π3)=-3cos(2π)2
f(4π3)=-3cos(2π)2
Step 6.5.2.4.2
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(4π3)=-3cos(0)2
Step 6.5.2.4.3
The exact value of cos(0) is 1.
f(4π3)=-3⋅12
f(4π3)=-3⋅12
Step 6.5.2.5
Multiply 3 by 1.
f(4π3)=-32
Step 6.5.2.6
The final answer is -32.
-32
-32
-32
Step 6.6
List the points in a table.
xf(x)0-32π302π332π04π3-32
xf(x)0-32π302π332π04π3-32
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 32
Period: 4π3
Phase Shift: None
Vertical Shift: None
xf(x)0-32π302π332π04π3-32
Step 8