Trigonometry Examples

Convert to Trigonometric Form (1+i)^6
Step 1
Use the Binomial Theorem.
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
One to any power is one.
Step 2.1.2
One to any power is one.
Step 2.1.3
Multiply by .
Step 2.1.4
One to any power is one.
Step 2.1.5
Multiply by .
Step 2.1.6
Rewrite as .
Step 2.1.7
Multiply by .
Step 2.1.8
One to any power is one.
Step 2.1.9
Multiply by .
Step 2.1.10
Factor out .
Step 2.1.11
Rewrite as .
Step 2.1.12
Rewrite as .
Step 2.1.13
Multiply by .
Step 2.1.14
One to any power is one.
Step 2.1.15
Multiply by .
Step 2.1.16
Rewrite as .
Tap for more steps...
Step 2.1.16.1
Rewrite as .
Step 2.1.16.2
Rewrite as .
Step 2.1.16.3
Raise to the power of .
Step 2.1.17
Multiply by .
Step 2.1.18
Multiply by .
Step 2.1.19
Factor out .
Step 2.1.20
Rewrite as .
Tap for more steps...
Step 2.1.20.1
Rewrite as .
Step 2.1.20.2
Rewrite as .
Step 2.1.20.3
Raise to the power of .
Step 2.1.21
Multiply by .
Step 2.1.22
Factor out .
Step 2.1.23
Rewrite as .
Tap for more steps...
Step 2.1.23.1
Rewrite as .
Step 2.1.23.2
Rewrite as .
Step 2.1.23.3
Raise to the power of .
Step 2.1.24
Multiply by .
Step 2.1.25
Rewrite as .
Step 2.2
Simplify by adding terms.
Tap for more steps...
Step 2.2.1
Subtract from .
Step 2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.2.2.1
Add and .
Step 2.2.2.2
Subtract from .
Step 2.2.2.3
Add and .
Step 2.2.3
Subtract from .
Step 2.2.4
Add and .
Step 3
This is the trigonometric form of a complex number where is the modulus and is the angle created on the complex plane.
Step 4
The modulus of a complex number is the distance from the origin on the complex plane.
where
Step 5
Substitute the actual values of and .
Step 6
Find .
Tap for more steps...
Step 6.1
Raise to the power of .
Step 6.2
Rewrite as .
Step 6.3
Pull terms out from under the radical, assuming positive real numbers.
Step 7
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
Step 8
Since the argument is undefined and is negative, the angle of the point on the complex plane is .
Step 9
Substitute the values of and .