Enter a problem...
Trigonometry Examples
sin(3x)sin(x)-cos(3x)cos(x)=2
Step 1
Step 1.1
Rewrite sin(3x)sin(x) as a product.
sin(3x)1sin(x)-cos(3x)cos(x)=2
Step 1.2
Write sin(3x) as a fraction with denominator 1.
sin(3x)1⋅1sin(x)-cos(3x)cos(x)=2
Step 1.3
Simplify.
Step 1.3.1
Divide sin(3x) by 1.
sin(3x)1sin(x)-cos(3x)cos(x)=2
Step 1.3.2
Convert from 1sin(x) to csc(x).
sin(3x)csc(x)-cos(3x)cos(x)=2
sin(3x)csc(x)-cos(3x)cos(x)=2
Step 1.4
Rewrite cos(3x)cos(x) as a product.
sin(3x)csc(x)-(cos(3x)1cos(x))=2
Step 1.5
Write cos(3x) as a fraction with denominator 1.
sin(3x)csc(x)-(cos(3x)1⋅1cos(x))=2
Step 1.6
Simplify.
Step 1.6.1
Divide cos(3x) by 1.
sin(3x)csc(x)-(cos(3x)1cos(x))=2
Step 1.6.2
Convert from 1cos(x) to sec(x).
sin(3x)csc(x)-(cos(3x)sec(x))=2
sin(3x)csc(x)-cos(3x)sec(x)=2
sin(3x)csc(x)-cos(3x)sec(x)=2
Step 2
Graph each side of the equation. The solution is the x-value of the point of intersection.
x≈0,-0.1,0.1,-15,15,-0.3,0.3
Step 3
The result can be shown in multiple forms.
Exact Form:
x≈0,-0.1,0.1,-15,15,-0.3,0.3
Decimal Form:
x≈0,-0.1,0.1,-0.2,0.2,-0.3,0.3
Step 4