Trigonometry Examples

Solve for ? 3sin(x)+3=2cos(x)^2
Step 1
Subtract from both sides of the equation.
Step 2
Square both sides of the equation.
Step 3
Simplify .
Tap for more steps...
Step 3.1
Apply the product rule to .
Step 3.2
Raise to the power of .
Step 4
Simplify .
Tap for more steps...
Step 4.1
Rewrite as .
Step 4.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.2.1
Apply the distributive property.
Step 4.2.2
Apply the distributive property.
Step 4.2.3
Apply the distributive property.
Step 4.3
Simplify and combine like terms.
Tap for more steps...
Step 4.3.1
Simplify each term.
Tap for more steps...
Step 4.3.1.1
Rewrite using the commutative property of multiplication.
Step 4.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.1.2.1
Move .
Step 4.3.1.2.2
Use the power rule to combine exponents.
Step 4.3.1.2.3
Add and .
Step 4.3.1.3
Multiply by .
Step 4.3.1.4
Multiply by .
Step 4.3.1.5
Multiply by .
Step 4.3.1.6
Multiply by .
Step 4.3.2
Subtract from .
Step 5
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 5.1
Subtract from both sides of the equation.
Step 5.2
Add to both sides of the equation.
Step 5.3
Subtract from both sides of the equation.
Step 6
Simplify .
Tap for more steps...
Step 6.1
Move .
Step 6.2
Reorder and .
Step 6.3
Factor out of .
Step 6.4
Factor out of .
Step 6.5
Factor out of .
Step 6.6
Apply pythagorean identity.
Step 6.7
Add and .
Step 7
Solve for .
Tap for more steps...
Step 7.1
Factor the left side of the equation.
Tap for more steps...
Step 7.1.1
Rewrite as .
Step 7.1.2
Let . Substitute for all occurrences of .
Step 7.1.3
Factor out of .
Tap for more steps...
Step 7.1.3.1
Factor out of .
Step 7.1.3.2
Factor out of .
Step 7.1.3.3
Factor out of .
Step 7.1.4
Replace all occurrences of with .
Step 7.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 7.3
Set equal to and solve for .
Tap for more steps...
Step 7.3.1
Set equal to .
Step 7.3.2
Solve for .
Tap for more steps...
Step 7.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.3.2.2
Simplify .
Tap for more steps...
Step 7.3.2.2.1
Rewrite as .
Step 7.3.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 7.3.2.2.3
Plus or minus is .
Step 7.3.2.3
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 7.3.2.4
Simplify the right side.
Tap for more steps...
Step 7.3.2.4.1
The exact value of is .
Step 7.3.2.5
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 7.3.2.6
Simplify .
Tap for more steps...
Step 7.3.2.6.1
To write as a fraction with a common denominator, multiply by .
Step 7.3.2.6.2
Combine fractions.
Tap for more steps...
Step 7.3.2.6.2.1
Combine and .
Step 7.3.2.6.2.2
Combine the numerators over the common denominator.
Step 7.3.2.6.3
Simplify the numerator.
Tap for more steps...
Step 7.3.2.6.3.1
Multiply by .
Step 7.3.2.6.3.2
Subtract from .
Step 7.3.2.7
Find the period of .
Tap for more steps...
Step 7.3.2.7.1
The period of the function can be calculated using .
Step 7.3.2.7.2
Replace with in the formula for period.
Step 7.3.2.7.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 7.3.2.7.4
Divide by .
Step 7.3.2.8
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
, for any integer
Step 7.4
Set equal to and solve for .
Tap for more steps...
Step 7.4.1
Set equal to .
Step 7.4.2
Solve for .
Tap for more steps...
Step 7.4.2.1
Subtract from both sides of the equation.
Step 7.4.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 7.4.2.2.1
Divide each term in by .
Step 7.4.2.2.2
Simplify the left side.
Tap for more steps...
Step 7.4.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 7.4.2.2.2.1.1
Cancel the common factor.
Step 7.4.2.2.2.1.2
Divide by .
Step 7.4.2.2.3
Simplify the right side.
Tap for more steps...
Step 7.4.2.2.3.1
Dividing two negative values results in a positive value.
Step 7.4.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.4.2.4
Simplify .
Tap for more steps...
Step 7.4.2.4.1
Rewrite as .
Step 7.4.2.4.2
Simplify the denominator.
Tap for more steps...
Step 7.4.2.4.2.1
Rewrite as .
Step 7.4.2.4.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 7.4.2.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 7.4.2.5.1
First, use the positive value of the to find the first solution.
Step 7.4.2.5.2
Next, use the negative value of the to find the second solution.
Step 7.4.2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 7.4.2.6
Set up each of the solutions to solve for .
Step 7.4.2.7
Solve for in .
Tap for more steps...
Step 7.4.2.7.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 7.4.2.7.2
Simplify the right side.
Tap for more steps...
Step 7.4.2.7.2.1
The exact value of is .
Step 7.4.2.7.3
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 7.4.2.7.4
Simplify .
Tap for more steps...
Step 7.4.2.7.4.1
To write as a fraction with a common denominator, multiply by .
Step 7.4.2.7.4.2
Combine fractions.
Tap for more steps...
Step 7.4.2.7.4.2.1
Combine and .
Step 7.4.2.7.4.2.2
Combine the numerators over the common denominator.
Step 7.4.2.7.4.3
Simplify the numerator.
Tap for more steps...
Step 7.4.2.7.4.3.1
Multiply by .
Step 7.4.2.7.4.3.2
Subtract from .
Step 7.4.2.7.5
Find the period of .
Tap for more steps...
Step 7.4.2.7.5.1
The period of the function can be calculated using .
Step 7.4.2.7.5.2
Replace with in the formula for period.
Step 7.4.2.7.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 7.4.2.7.5.4
Divide by .
Step 7.4.2.7.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 7.4.2.8
Solve for in .
Tap for more steps...
Step 7.4.2.8.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 7.4.2.8.2
Simplify the right side.
Tap for more steps...
Step 7.4.2.8.2.1
The exact value of is .
Step 7.4.2.8.3
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Step 7.4.2.8.4
Simplify .
Tap for more steps...
Step 7.4.2.8.4.1
To write as a fraction with a common denominator, multiply by .
Step 7.4.2.8.4.2
Combine fractions.
Tap for more steps...
Step 7.4.2.8.4.2.1
Combine and .
Step 7.4.2.8.4.2.2
Combine the numerators over the common denominator.
Step 7.4.2.8.4.3
Simplify the numerator.
Tap for more steps...
Step 7.4.2.8.4.3.1
Multiply by .
Step 7.4.2.8.4.3.2
Subtract from .
Step 7.4.2.8.5
Find the period of .
Tap for more steps...
Step 7.4.2.8.5.1
The period of the function can be calculated using .
Step 7.4.2.8.5.2
Replace with in the formula for period.
Step 7.4.2.8.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 7.4.2.8.5.4
Divide by .
Step 7.4.2.8.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 7.4.2.9
List all of the solutions.
, for any integer
Step 7.4.2.10
Consolidate the solutions.
Tap for more steps...
Step 7.4.2.10.1
Consolidate and to .
, for any integer
Step 7.4.2.10.2
Consolidate and to .
, for any integer
, for any integer
, for any integer
, for any integer
Step 7.5
The final solution is all the values that make true.
, for any integer
, for any integer
Step 8
Consolidate the answers.
Tap for more steps...
Step 8.1
Consolidate and to .
, for any integer
Step 8.2
Consolidate the answers.
, for any integer
, for any integer
Step 9
Verify each of the solutions by substituting them into and solving.
, for any integer