Trigonometry Examples

Solve for x (cot(x)-csc(x))(cos(x)+1)=-sin(x)
(cot(x)-csc(x))(cos(x)+1)=-sin(x)(cot(x)csc(x))(cos(x)+1)=sin(x)
Step 1
Divide each term in the equation by cos(x).
(cot(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Rewrite cot(x) in terms of sines and cosines.
(cos(x)sin(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 2.2
Rewrite csc(x) in terms of sines and cosines.
(cos(x)sin(x)-1sin(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
(cos(x)sin(x)-1sin(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Convert from 1sin(x) to csc(x).
(cos(x)sin(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 3.2
Convert from cos(x)sin(x) to cot(x).
(cot(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
(cot(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 4
Replace cos(x) with an equivalent expression in the numerator.
(cot(x)-csc(x))(cos(x)+1)sec(x)=-sin(x)cos(x)
Step 5
Simplify each term.
Tap for more steps...
Step 5.1
Rewrite cot(x) in terms of sines and cosines.
(cos(x)sin(x)-csc(x))(cos(x)+1)sec(x)=-sin(x)cos(x)
Step 5.2
Rewrite csc(x) in terms of sines and cosines.
(cos(x)sin(x)-1sin(x))(cos(x)+1)sec(x)=-sin(x)cos(x)
(cos(x)sin(x)-1sin(x))(cos(x)+1)sec(x)=-sin(x)cos(x)
Step 6
Expand (cos(x)sin(x)-1sin(x))(cos(x)+1) using the FOIL Method.
Tap for more steps...
Step 6.1
Apply the distributive property.
(cos(x)sin(x)(cos(x)+1)-1sin(x)(cos(x)+1))sec(x)=-sin(x)cos(x)
Step 6.2
Apply the distributive property.
(cos(x)sin(x)cos(x)+cos(x)sin(x)1-1sin(x)(cos(x)+1))sec(x)=-sin(x)cos(x)
Step 6.3
Apply the distributive property.
(cos(x)sin(x)cos(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
(cos(x)sin(x)cos(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7
Simplify and combine like terms.
Tap for more steps...
Step 7.1
Simplify each term.
Tap for more steps...
Step 7.1.1
Multiply cos(x)sin(x)cos(x).
Tap for more steps...
Step 7.1.1.1
Combine cos(x)sin(x) and cos(x).
(cos(x)cos(x)sin(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7.1.1.2
Raise cos(x) to the power of 1.
(cos(x)cos(x)sin(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7.1.1.3
Raise cos(x) to the power of 1.
(cos(x)cos(x)sin(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7.1.1.4
Use the power rule aman=am+n to combine exponents.
(cos(x)1+1sin(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7.1.1.5
Add 1 and 1.
(cos2(x)sin(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
(cos2(x)sin(x)+cos(x)sin(x)1-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7.1.2
Multiply cos(x)sin(x) by 1.
(cos2(x)sin(x)+cos(x)sin(x)-1sin(x)cos(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7.1.3
Combine cos(x) and 1sin(x).
(cos2(x)sin(x)+cos(x)sin(x)-cos(x)sin(x)-1sin(x)1)sec(x)=-sin(x)cos(x)
Step 7.1.4
Multiply -1 by 1.
(cos2(x)sin(x)+cos(x)sin(x)-cos(x)sin(x)-1sin(x))sec(x)=-sin(x)cos(x)
(cos2(x)sin(x)+cos(x)sin(x)-cos(x)sin(x)-1sin(x))sec(x)=-sin(x)cos(x)
Step 7.2
Subtract cos(x)sin(x) from cos(x)sin(x).
(cos2(x)sin(x)+0-1sin(x))sec(x)=-sin(x)cos(x)
Step 7.3
Add cos2(x)sin(x) and 0.
(cos2(x)sin(x)-1sin(x))sec(x)=-sin(x)cos(x)
(cos2(x)sin(x)-1sin(x))sec(x)=-sin(x)cos(x)
Step 8
Simplify terms.
Tap for more steps...
Step 8.1
Combine the numerators over the common denominator.
cos2(x)-1sin(x)sec(x)=-sin(x)cos(x)
Step 8.2
Reorder cos2(x) and -1.
-1+cos2(x)sin(x)sec(x)=-sin(x)cos(x)
Step 8.3
Rewrite -1 as -1(1).
-11+cos2(x)sin(x)sec(x)=-sin(x)cos(x)
Step 8.4
Factor -1 out of cos2(x).
-11-1(-cos2(x))sin(x)sec(x)=-sin(x)cos(x)
Step 8.5
Factor -1 out of -1(1)-1(-cos2(x)).
-1(1-cos2(x))sin(x)sec(x)=-sin(x)cos(x)
Step 8.6
Rewrite -1(1-cos2(x)) as -(1-cos2(x)).
-(1-cos2(x))sin(x)sec(x)=-sin(x)cos(x)
-(1-cos2(x))sin(x)sec(x)=-sin(x)cos(x)
Step 9
Apply pythagorean identity.
-sin2(x)sin(x)sec(x)=-sin(x)cos(x)
Step 10
Cancel the common factor of sin2(x) and sin(x).
Tap for more steps...
Step 10.1
Factor sin(x) out of -sin2(x).
sin(x)(-sin(x))sin(x)sec(x)=-sin(x)cos(x)
Step 10.2
Cancel the common factors.
Tap for more steps...
Step 10.2.1
Multiply by 1.
sin(x)(-sin(x))sin(x)1sec(x)=-sin(x)cos(x)
Step 10.2.2
Cancel the common factor.
sin(x)(-sin(x))sin(x)1sec(x)=-sin(x)cos(x)
Step 10.2.3
Rewrite the expression.
-sin(x)1sec(x)=-sin(x)cos(x)
Step 10.2.4
Divide -sin(x) by 1.
-sin(x)sec(x)=-sin(x)cos(x)
-sin(x)sec(x)=-sin(x)cos(x)
-sin(x)sec(x)=-sin(x)cos(x)
Step 11
Rewrite sec(x) in terms of sines and cosines.
-sin(x)1cos(x)=-sin(x)cos(x)
Step 12
Combine 1cos(x) and sin(x).
-sin(x)cos(x)=-sin(x)cos(x)
Step 13
Convert from sin(x)cos(x) to tan(x).
-tan(x)=-sin(x)cos(x)
Step 14
Separate fractions.
-tan(x)=-11sin(x)cos(x)
Step 15
Convert from sin(x)cos(x) to tan(x).
-tan(x)=-11tan(x)
Step 16
Divide -1 by 1.
-tan(x)=-tan(x)
Step 17
Move all terms containing tan(x) to the left side of the equation.
Tap for more steps...
Step 17.1
Add tan(x) to both sides of the equation.
-tan(x)+tan(x)=0
Step 17.2
Add -tan(x) and tan(x).
0=0
0=0
Step 18
Since 0=0, the equation will always be true for any value of x.
All real numbers
Step 19
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-,)
 [x2  12  π  xdx ]