Enter a problem...
Trigonometry Examples
(cot(x)-csc(x))(cos(x)+1)=-sin(x)(cot(x)−csc(x))(cos(x)+1)=−sin(x)
Step 1
Divide each term in the equation by cos(x).
(cot(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 2
Step 2.1
Rewrite cot(x) in terms of sines and cosines.
(cos(x)sin(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 2.2
Rewrite csc(x) in terms of sines and cosines.
(cos(x)sin(x)-1sin(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
(cos(x)sin(x)-1sin(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 3
Step 3.1
Convert from 1sin(x) to csc(x).
(cos(x)sin(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 3.2
Convert from cos(x)sin(x) to cot(x).
(cot(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
(cot(x)-csc(x))(cos(x)+1)cos(x)=-sin(x)cos(x)
Step 4
Replace cos(x) with an equivalent expression in the numerator.
(cot(x)-csc(x))(cos(x)+1)⋅sec(x)=-sin(x)cos(x)
Step 5
Step 5.1
Rewrite cot(x) in terms of sines and cosines.
(cos(x)sin(x)-csc(x))(cos(x)+1)⋅sec(x)=-sin(x)cos(x)
Step 5.2
Rewrite csc(x) in terms of sines and cosines.
(cos(x)sin(x)-1sin(x))(cos(x)+1)⋅sec(x)=-sin(x)cos(x)
(cos(x)sin(x)-1sin(x))(cos(x)+1)⋅sec(x)=-sin(x)cos(x)
Step 6
Step 6.1
Apply the distributive property.
(cos(x)sin(x)⋅(cos(x)+1)-1sin(x)⋅(cos(x)+1))⋅sec(x)=-sin(x)cos(x)
Step 6.2
Apply the distributive property.
(cos(x)sin(x)⋅cos(x)+cos(x)sin(x)⋅1-1sin(x)⋅(cos(x)+1))⋅sec(x)=-sin(x)cos(x)
Step 6.3
Apply the distributive property.
(cos(x)sin(x)⋅cos(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
(cos(x)sin(x)⋅cos(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
Multiply cos(x)sin(x)cos(x).
Step 7.1.1.1
Combine cos(x)sin(x) and cos(x).
(cos(x)cos(x)sin(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7.1.1.2
Raise cos(x) to the power of 1.
(cos(x)cos(x)sin(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7.1.1.3
Raise cos(x) to the power of 1.
(cos(x)cos(x)sin(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7.1.1.4
Use the power rule aman=am+n to combine exponents.
(cos(x)1+1sin(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7.1.1.5
Add 1 and 1.
(cos2(x)sin(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
(cos2(x)sin(x)+cos(x)sin(x)⋅1-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7.1.2
Multiply cos(x)sin(x) by 1.
(cos2(x)sin(x)+cos(x)sin(x)-1sin(x)⋅cos(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7.1.3
Combine cos(x) and 1sin(x).
(cos2(x)sin(x)+cos(x)sin(x)-cos(x)sin(x)-1sin(x)⋅1)⋅sec(x)=-sin(x)cos(x)
Step 7.1.4
Multiply -1 by 1.
(cos2(x)sin(x)+cos(x)sin(x)-cos(x)sin(x)-1sin(x))⋅sec(x)=-sin(x)cos(x)
(cos2(x)sin(x)+cos(x)sin(x)-cos(x)sin(x)-1sin(x))⋅sec(x)=-sin(x)cos(x)
Step 7.2
Subtract cos(x)sin(x) from cos(x)sin(x).
(cos2(x)sin(x)+0-1sin(x))⋅sec(x)=-sin(x)cos(x)
Step 7.3
Add cos2(x)sin(x) and 0.
(cos2(x)sin(x)-1sin(x))⋅sec(x)=-sin(x)cos(x)
(cos2(x)sin(x)-1sin(x))⋅sec(x)=-sin(x)cos(x)
Step 8
Step 8.1
Combine the numerators over the common denominator.
cos2(x)-1sin(x)⋅sec(x)=-sin(x)cos(x)
Step 8.2
Reorder cos2(x) and -1.
-1+cos2(x)sin(x)⋅sec(x)=-sin(x)cos(x)
Step 8.3
Rewrite -1 as -1(1).
-1⋅1+cos2(x)sin(x)⋅sec(x)=-sin(x)cos(x)
Step 8.4
Factor -1 out of cos2(x).
-1⋅1-1(-cos2(x))sin(x)⋅sec(x)=-sin(x)cos(x)
Step 8.5
Factor -1 out of -1(1)-1(-cos2(x)).
-1(1-cos2(x))sin(x)⋅sec(x)=-sin(x)cos(x)
Step 8.6
Rewrite -1(1-cos2(x)) as -(1-cos2(x)).
-(1-cos2(x))sin(x)⋅sec(x)=-sin(x)cos(x)
-(1-cos2(x))sin(x)⋅sec(x)=-sin(x)cos(x)
Step 9
Apply pythagorean identity.
-sin2(x)sin(x)⋅sec(x)=-sin(x)cos(x)
Step 10
Step 10.1
Factor sin(x) out of -sin2(x).
sin(x)(-sin(x))sin(x)⋅sec(x)=-sin(x)cos(x)
Step 10.2
Cancel the common factors.
Step 10.2.1
Multiply by 1.
sin(x)(-sin(x))sin(x)⋅1⋅sec(x)=-sin(x)cos(x)
Step 10.2.2
Cancel the common factor.
sin(x)(-sin(x))sin(x)⋅1⋅sec(x)=-sin(x)cos(x)
Step 10.2.3
Rewrite the expression.
-sin(x)1⋅sec(x)=-sin(x)cos(x)
Step 10.2.4
Divide -sin(x) by 1.
-sin(x)⋅sec(x)=-sin(x)cos(x)
-sin(x)⋅sec(x)=-sin(x)cos(x)
-sin(x)⋅sec(x)=-sin(x)cos(x)
Step 11
Rewrite sec(x) in terms of sines and cosines.
-sin(x)⋅1cos(x)=-sin(x)cos(x)
Step 12
Combine 1cos(x) and sin(x).
-sin(x)cos(x)=-sin(x)cos(x)
Step 13
Convert from sin(x)cos(x) to tan(x).
-tan(x)=-sin(x)cos(x)
Step 14
Separate fractions.
-tan(x)=-11⋅sin(x)cos(x)
Step 15
Convert from sin(x)cos(x) to tan(x).
-tan(x)=-11⋅tan(x)
Step 16
Divide -1 by 1.
-tan(x)=-tan(x)
Step 17
Step 17.1
Add tan(x) to both sides of the equation.
-tan(x)+tan(x)=0
Step 17.2
Add -tan(x) and tan(x).
0=0
0=0
Step 18
Since 0=0, the equation will always be true for any value of x.
All real numbers
Step 19
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-∞,∞)