Enter a problem...
Trigonometry Examples
Step 1
Replace the with based on the identity.
Step 2
Step 2.1
Apply the distributive property.
Step 2.2
Apply the distributive property.
Step 2.3
Apply the distributive property.
Step 3
Step 3.1
Move to the left of .
Step 3.2
Rewrite as .
Step 3.3
Rewrite as .
Step 3.4
Multiply by .
Step 4
Step 4.1
Simplify .
Step 4.1.1
Simplify with factoring out.
Step 4.1.1.1
Factor out of .
Step 4.1.1.2
Factor out of .
Step 4.1.1.3
Factor out of .
Step 4.1.2
Apply pythagorean identity.
Step 4.1.3
Simplify with factoring out.
Step 4.1.3.1
Factor out of .
Step 4.1.3.2
Rewrite as .
Step 4.1.3.3
Factor out of .
Step 4.1.4
Apply pythagorean identity.
Step 4.1.5
Rewrite as .
Step 4.1.6
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.1.7
Simplify terms.
Step 4.1.7.1
Simplify each term.
Step 4.1.7.1.1
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 4.1.7.1.1.1
Reorder and .
Step 4.1.7.1.1.2
Rewrite in terms of sines and cosines.
Step 4.1.7.1.1.3
Cancel the common factors.
Step 4.1.7.1.2
Convert from to .
Step 4.1.7.2
Simplify each term.
Step 4.1.7.2.1
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 4.1.7.2.1.1
Reorder and .
Step 4.1.7.2.1.2
Rewrite in terms of sines and cosines.
Step 4.1.7.2.1.3
Cancel the common factors.
Step 4.1.7.2.2
Convert from to .
Step 4.1.8
Expand using the FOIL Method.
Step 4.1.8.1
Apply the distributive property.
Step 4.1.8.2
Apply the distributive property.
Step 4.1.8.3
Apply the distributive property.
Step 4.1.9
Simplify terms.
Step 4.1.9.1
Combine the opposite terms in .
Step 4.1.9.1.1
Reorder the factors in the terms and .
Step 4.1.9.1.2
Add and .
Step 4.1.9.1.3
Add and .
Step 4.1.9.2
Simplify each term.
Step 4.1.9.2.1
Multiply .
Step 4.1.9.2.1.1
Raise to the power of .
Step 4.1.9.2.1.2
Raise to the power of .
Step 4.1.9.2.1.3
Use the power rule to combine exponents.
Step 4.1.9.2.1.4
Add and .
Step 4.1.9.2.2
Rewrite using the commutative property of multiplication.
Step 4.1.9.2.3
Multiply .
Step 4.1.9.2.3.1
Raise to the power of .
Step 4.1.9.2.3.2
Raise to the power of .
Step 4.1.9.2.3.3
Use the power rule to combine exponents.
Step 4.1.9.2.3.4
Add and .
Step 4.1.10
Apply pythagorean identity.
Step 5
Since , the equation will always be true for any value of .
All real numbers
Step 6
The result can be shown in multiple forms.
All real numbers
Interval Notation: