Enter a problem...
Trigonometry Examples
sin(30)x=sin(60)ysin(30)x=sin(60)y
Step 1
Step 1.1
The exact value of sin(30)sin(30) is 1212.
12x=sin(60)y12x=sin(60)y
Step 1.2
Multiply the numerator by the reciprocal of the denominator.
12⋅1x=sin(60)y12⋅1x=sin(60)y
Step 1.3
Multiply 1212 by 1x1x.
12x=sin(60)y12x=sin(60)y
Step 1.4
The exact value of sin(60)sin(60) is √32√32.
12x=√32y12x=√32y
Step 1.5
Multiply the numerator by the reciprocal of the denominator.
12x=√32⋅1y12x=√32⋅1y
Step 1.6
Multiply √32√32 by 1y1y.
12x=√32y12x=√32y
12x=√32y12x=√32y
Step 2
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
1(2y)=2x√31(2y)=2x√3
Step 3
Step 3.1
Rewrite the equation as 2x√3=1⋅(2y)2x√3=1⋅(2y).
2x√3=1⋅(2y)2x√3=1⋅(2y)
Step 3.2
Multiply 22 by 11.
2x√3=2⋅y2x√3=2⋅y
Step 3.3
Divide each term in 2x√3=2⋅y2x√3=2⋅y by 2√32√3 and simplify.
Step 3.3.1
Divide each term in 2x√3=2⋅y2x√3=2⋅y by 2√32√3.
2x√32√3=2⋅y2√32x√32√3=2⋅y2√3
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 22.
Step 3.3.2.1.1
Cancel the common factor.
2x√32√3=2⋅y2√3
Step 3.3.2.1.2
Rewrite the expression.
x√3√3=2⋅y2√3
x√3√3=2⋅y2√3
Step 3.3.2.2
Cancel the common factor of √3.
Step 3.3.2.2.1
Cancel the common factor.
x√3√3=2⋅y2√3
Step 3.3.2.2.2
Divide x by 1.
x=2⋅y2√3
x=2⋅y2√3
x=2⋅y2√3
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Cancel the common factor of 2.
Step 3.3.3.1.1
Cancel the common factor.
x=2⋅y2√3
Step 3.3.3.1.2
Rewrite the expression.
x=y√3
x=y√3
Step 3.3.3.2
Multiply y√3 by √3√3.
x=y√3⋅√3√3
Step 3.3.3.3
Combine and simplify the denominator.
Step 3.3.3.3.1
Multiply y√3 by √3√3.
x=y√3√3√3
Step 3.3.3.3.2
Raise √3 to the power of 1.
x=y√3√31√3
Step 3.3.3.3.3
Raise √3 to the power of 1.
x=y√3√31√31
Step 3.3.3.3.4
Use the power rule aman=am+n to combine exponents.
x=y√3√31+1
Step 3.3.3.3.5
Add 1 and 1.
x=y√3√32
Step 3.3.3.3.6
Rewrite √32 as 3.
Step 3.3.3.3.6.1
Use n√ax=axn to rewrite √3 as 312.
x=y√3(312)2
Step 3.3.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=y√3312⋅2
Step 3.3.3.3.6.3
Combine 12 and 2.
x=y√3322
Step 3.3.3.3.6.4
Cancel the common factor of 2.
Step 3.3.3.3.6.4.1
Cancel the common factor.
x=y√3322
Step 3.3.3.3.6.4.2
Rewrite the expression.
x=y√331
x=y√331
Step 3.3.3.3.6.5
Evaluate the exponent.
x=y√33
x=y√33
x=y√33
x=y√33
x=y√33
x=y√33