Trigonometry Examples

Solve for x 2cot(x)^2+3csc(x)=0
Step 1
Replace the with based on the identity.
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Apply the distributive property.
Step 2.2
Multiply by .
Step 3
Reorder the polynomial.
Step 4
Substitute for .
Step 5
Factor by grouping.
Tap for more steps...
Step 5.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 5.1.1
Factor out of .
Step 5.1.2
Rewrite as plus
Step 5.1.3
Apply the distributive property.
Step 5.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 5.2.1
Group the first two terms and the last two terms.
Step 5.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.3
Factor the polynomial by factoring out the greatest common factor, .
Step 6
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 7
Set equal to and solve for .
Tap for more steps...
Step 7.1
Set equal to .
Step 7.2
Solve for .
Tap for more steps...
Step 7.2.1
Add to both sides of the equation.
Step 7.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 7.2.2.1
Divide each term in by .
Step 7.2.2.2
Simplify the left side.
Tap for more steps...
Step 7.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 7.2.2.2.1.1
Cancel the common factor.
Step 7.2.2.2.1.2
Divide by .
Step 8
Set equal to and solve for .
Tap for more steps...
Step 8.1
Set equal to .
Step 8.2
Subtract from both sides of the equation.
Step 9
The final solution is all the values that make true.
Step 10
Substitute for .
Step 11
Set up each of the solutions to solve for .
Step 12
Solve for in .
Tap for more steps...
Step 12.1
The range of cosecant is and . Since does not fall in this range, there is no solution.
No solution
No solution
Step 13
Solve for in .
Tap for more steps...
Step 13.1
Take the inverse cosecant of both sides of the equation to extract from inside the cosecant.
Step 13.2
Simplify the right side.
Tap for more steps...
Step 13.2.1
The exact value of is .
Step 13.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 13.4
Simplify the expression to find the second solution.
Tap for more steps...
Step 13.4.1
Subtract from .
Step 13.4.2
The resulting angle of is positive, less than , and coterminal with .
Step 13.5
Find the period of .
Tap for more steps...
Step 13.5.1
The period of the function can be calculated using .
Step 13.5.2
Replace with in the formula for period.
Step 13.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 13.5.4
Divide by .
Step 13.6
Add to every negative angle to get positive angles.
Tap for more steps...
Step 13.6.1
Add to to find the positive angle.
Step 13.6.2
To write as a fraction with a common denominator, multiply by .
Step 13.6.3
Combine fractions.
Tap for more steps...
Step 13.6.3.1
Combine and .
Step 13.6.3.2
Combine the numerators over the common denominator.
Step 13.6.4
Simplify the numerator.
Tap for more steps...
Step 13.6.4.1
Multiply by .
Step 13.6.4.2
Subtract from .
Step 13.6.5
List the new angles.
Step 13.7
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 14
List all of the solutions.
, for any integer