Enter a problem...
Trigonometry Examples
2x-25-4=42x−25−4=4
Step 1
Step 1.1
Add 44 to both sides of the equation.
2x-25=4+42x−25=4+4
Step 1.2
Add 44 and 44.
2x-25=82x−25=8
2x-25=82x−25=8
Step 2
Raise each side of the equation to the power of -52−52 to eliminate the fractional exponent on the left side.
(2x-25)-52=±8-52(2x−25)−52=±8−52
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify (2x-25)-52(2x−25)−52.
Step 3.1.1.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
(21x25)-52=±8-52(21x25)−52=±8−52
Step 3.1.1.2
Combine 22 and 1x251x25.
(2x25)-52=±8-52(2x25)−52=±8−52
Step 3.1.1.3
Change the sign of the exponent by rewriting the base as its reciprocal.
(x252)52=±8-52(x252)52=±8−52
Step 3.1.1.4
Apply the product rule to x252x252.
(x25)52252=±8-52(x25)52252=±8−52
Step 3.1.1.5
Simplify the numerator.
Step 3.1.1.5.1
Multiply the exponents in (x25)52(x25)52.
Step 3.1.1.5.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x25⋅52252=±8-52x25⋅52252=±8−52
Step 3.1.1.5.1.2
Cancel the common factor of 22.
Step 3.1.1.5.1.2.1
Cancel the common factor.
x25⋅52252=±8-52
Step 3.1.1.5.1.2.2
Rewrite the expression.
x15⋅5252=±8-52
x15⋅5252=±8-52
Step 3.1.1.5.1.3
Cancel the common factor of 5.
Step 3.1.1.5.1.3.1
Cancel the common factor.
x15⋅5252=±8-52
Step 3.1.1.5.1.3.2
Rewrite the expression.
x1252=±8-52
x1252=±8-52
x1252=±8-52
Step 3.1.1.5.2
Simplify.
x252=±8-52
x252=±8-52
x252=±8-52
x252=±8-52
Step 3.2
Simplify the right side.
Step 3.2.1
Rewrite the expression using the negative exponent rule b-n=1bn.
x252=±1852
x252=±1852
x252=±1852
Step 4
Step 4.1
First, use the positive value of the ± to find the first solution.
x252=1852
Step 4.2
Multiply both sides of the equation by 252.
252x252=2521852
Step 4.3
Simplify both sides of the equation.
Step 4.3.1
Simplify the left side.
Step 4.3.1.1
Cancel the common factor of 252.
Step 4.3.1.1.1
Cancel the common factor.
252x252=2521852
Step 4.3.1.1.2
Rewrite the expression.
x=2521852
x=2521852
x=2521852
Step 4.3.2
Simplify the right side.
Step 4.3.2.1
Combine 252 and 1852.
x=252852
x=252852
x=252852
Step 4.4
Next, use the negative value of the ± to find the second solution.
x252=-1852
Step 4.5
Multiply both sides of the equation by 252.
252x252=252(-1852)
Step 4.6
Simplify both sides of the equation.
Step 4.6.1
Simplify the left side.
Step 4.6.1.1
Cancel the common factor of 252.
Step 4.6.1.1.1
Cancel the common factor.
252x252=252(-1852)
Step 4.6.1.1.2
Rewrite the expression.
x=252(-1852)
x=252(-1852)
x=252(-1852)
Step 4.6.2
Simplify the right side.
Step 4.6.2.1
Combine 252 and 1852.
x=-252852
x=-252852
x=-252852
Step 4.7
The complete solution is the result of both the positive and negative portions of the solution.
x=252852,-252852
x=252852,-252852
Step 5
The result can be shown in multiple forms.
Exact Form:
x=252852,-252852
Decimal Form:
x=0.03125,-0.03125