Trigonometry Examples

Solve for x 2x^(-2/5)-4=4
2x-25-4=42x254=4
Step 1
Move all terms not containing xx to the right side of the equation.
Tap for more steps...
Step 1.1
Add 44 to both sides of the equation.
2x-25=4+42x25=4+4
Step 1.2
Add 44 and 44.
2x-25=82x25=8
2x-25=82x25=8
Step 2
Raise each side of the equation to the power of -5252 to eliminate the fractional exponent on the left side.
(2x-25)-52=±8-52(2x25)52=±852
Step 3
Simplify the exponent.
Tap for more steps...
Step 3.1
Simplify the left side.
Tap for more steps...
Step 3.1.1
Simplify (2x-25)-52(2x25)52.
Tap for more steps...
Step 3.1.1.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
(21x25)-52=±8-52(21x25)52=±852
Step 3.1.1.2
Combine 22 and 1x251x25.
(2x25)-52=±8-52(2x25)52=±852
Step 3.1.1.3
Change the sign of the exponent by rewriting the base as its reciprocal.
(x252)52=±8-52(x252)52=±852
Step 3.1.1.4
Apply the product rule to x252x252.
(x25)52252=±8-52(x25)52252=±852
Step 3.1.1.5
Simplify the numerator.
Tap for more steps...
Step 3.1.1.5.1
Multiply the exponents in (x25)52(x25)52.
Tap for more steps...
Step 3.1.1.5.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x2552252=±8-52x2552252=±852
Step 3.1.1.5.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 3.1.1.5.1.2.1
Cancel the common factor.
x2552252=±8-52
Step 3.1.1.5.1.2.2
Rewrite the expression.
x155252=±8-52
x155252=±8-52
Step 3.1.1.5.1.3
Cancel the common factor of 5.
Tap for more steps...
Step 3.1.1.5.1.3.1
Cancel the common factor.
x155252=±8-52
Step 3.1.1.5.1.3.2
Rewrite the expression.
x1252=±8-52
x1252=±8-52
x1252=±8-52
Step 3.1.1.5.2
Simplify.
x252=±8-52
x252=±8-52
x252=±8-52
x252=±8-52
Step 3.2
Simplify the right side.
Tap for more steps...
Step 3.2.1
Rewrite the expression using the negative exponent rule b-n=1bn.
x252=±1852
x252=±1852
x252=±1852
Step 4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.1
First, use the positive value of the ± to find the first solution.
x252=1852
Step 4.2
Multiply both sides of the equation by 252.
252x252=2521852
Step 4.3
Simplify both sides of the equation.
Tap for more steps...
Step 4.3.1
Simplify the left side.
Tap for more steps...
Step 4.3.1.1
Cancel the common factor of 252.
Tap for more steps...
Step 4.3.1.1.1
Cancel the common factor.
252x252=2521852
Step 4.3.1.1.2
Rewrite the expression.
x=2521852
x=2521852
x=2521852
Step 4.3.2
Simplify the right side.
Tap for more steps...
Step 4.3.2.1
Combine 252 and 1852.
x=252852
x=252852
x=252852
Step 4.4
Next, use the negative value of the ± to find the second solution.
x252=-1852
Step 4.5
Multiply both sides of the equation by 252.
252x252=252(-1852)
Step 4.6
Simplify both sides of the equation.
Tap for more steps...
Step 4.6.1
Simplify the left side.
Tap for more steps...
Step 4.6.1.1
Cancel the common factor of 252.
Tap for more steps...
Step 4.6.1.1.1
Cancel the common factor.
252x252=252(-1852)
Step 4.6.1.1.2
Rewrite the expression.
x=252(-1852)
x=252(-1852)
x=252(-1852)
Step 4.6.2
Simplify the right side.
Tap for more steps...
Step 4.6.2.1
Combine 252 and 1852.
x=-252852
x=-252852
x=-252852
Step 4.7
The complete solution is the result of both the positive and negative portions of the solution.
x=252852,-252852
x=252852,-252852
Step 5
The result can be shown in multiple forms.
Exact Form:
x=252852,-252852
Decimal Form:
x=0.03125,-0.03125
 [x2  12  π  xdx ]