Enter a problem...
Trigonometry Examples
2sin(x4)+√3=02sin(x4)+√3=0
Step 1
Subtract √3√3 from both sides of the equation.
2sin(x4)=-√32sin(x4)=−√3
Step 2
Step 2.1
Divide each term in 2sin(x4)=-√32sin(x4)=−√3 by 22.
2sin(x4)2=-√322sin(x4)2=−√32
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 22.
Step 2.2.1.1
Cancel the common factor.
2sin(x4)2=-√32
Step 2.2.1.2
Divide sin(x4) by 1.
sin(x4)=-√32
sin(x4)=-√32
sin(x4)=-√32
Step 2.3
Simplify the right side.
Step 2.3.1
Move the negative in front of the fraction.
sin(x4)=-√32
sin(x4)=-√32
sin(x4)=-√32
Step 3
Take the inverse sine of both sides of the equation to extract x from inside the sine.
x4=arcsin(-√32)
Step 4
Step 4.1
The exact value of arcsin(-√32) is -π3.
x4=-π3
x4=-π3
Step 5
Multiply both sides of the equation by 4.
4x4=4(-π3)
Step 6
Step 6.1
Simplify the left side.
Step 6.1.1
Cancel the common factor of 4.
Step 6.1.1.1
Cancel the common factor.
4x4=4(-π3)
Step 6.1.1.2
Rewrite the expression.
x=4(-π3)
x=4(-π3)
x=4(-π3)
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify 4(-π3).
Step 6.2.1.1
Multiply 4(-π3).
Step 6.2.1.1.1
Multiply -1 by 4.
x=-4π3
Step 6.2.1.1.2
Combine -4 and π3.
x=-4π3
x=-4π3
Step 6.2.1.2
Move the negative in front of the fraction.
x=-4π3
x=-4π3
x=-4π3
x=-4π3
Step 7
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from 2π, to find a reference angle. Next, add this reference angle to π to find the solution in the third quadrant.
x4=2π+π3+π
Step 8
Step 8.1
Subtract 2π from 2π+π3+π.
x4=2π+π3+π-2π
Step 8.2
The resulting angle of 4π3 is positive, less than 2π, and coterminal with 2π+π3+π.
x4=4π3
Step 8.3
Solve for x.
Step 8.3.1
Multiply both sides of the equation by 4.
4x4=44π3
Step 8.3.2
Simplify both sides of the equation.
Step 8.3.2.1
Simplify the left side.
Step 8.3.2.1.1
Cancel the common factor of 4.
Step 8.3.2.1.1.1
Cancel the common factor.
4x4=44π3
Step 8.3.2.1.1.2
Rewrite the expression.
x=44π3
x=44π3
x=44π3
Step 8.3.2.2
Simplify the right side.
Step 8.3.2.2.1
Multiply 44π3.
Step 8.3.2.2.1.1
Combine 4 and 4π3.
x=4(4π)3
Step 8.3.2.2.1.2
Multiply 4 by 4.
x=16π3
x=16π3
x=16π3
x=16π3
x=16π3
x=16π3
Step 9
Step 9.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 9.2
Replace b with 14 in the formula for period.
2π|14|
Step 9.3
14 is approximately 0.25 which is positive so remove the absolute value
2π14
Step 9.4
Multiply the numerator by the reciprocal of the denominator.
2π⋅4
Step 9.5
Multiply 4 by 2.
8π
8π
Step 10
Step 10.1
Add 8π to -4π3 to find the positive angle.
-4π3+8π
Step 10.2
To write 8π as a fraction with a common denominator, multiply by 33.
8π⋅33-4π3
Step 10.3
Combine fractions.
Step 10.3.1
Combine 8π and 33.
8π⋅33-4π3
Step 10.3.2
Combine the numerators over the common denominator.
8π⋅3-4π3
8π⋅3-4π3
Step 10.4
Simplify the numerator.
Step 10.4.1
Multiply 3 by 8.
24π-4π3
Step 10.4.2
Subtract 4π from 24π.
20π3
20π3
Step 10.5
List the new angles.
x=20π3
x=20π3
Step 11
The period of the sin(x4) function is 8π so values will repeat every 8π radians in both directions.
x=16π3+8πn,20π3+8πn, for any integer n