Trigonometry Examples

Solve for x 2 natural log of square root of x- natural log of 1-x=2
2ln(x)-ln(1-x)=22ln(x)ln(1x)=2
Step 1
Reorder 11 and -xx.
2ln(x)-ln(-x+1)=22ln(x)ln(x+1)=2
Step 2
Simplify the left side.
Tap for more steps...
Step 2.1
Simplify 2ln(x)-ln(-x+1)2ln(x)ln(x+1).
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Simplify 2ln(x)2ln(x) by moving 22 inside the logarithm.
ln(x2)-ln(-x+1)=2ln(x2)ln(x+1)=2
Step 2.1.1.2
Rewrite x2x2 as xx.
Tap for more steps...
Step 2.1.1.2.1
Use nax=axnnax=axn to rewrite xx as x12x12.
ln((x12)2)-ln(-x+1)=2ln((x12)2)ln(x+1)=2
Step 2.1.1.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ln(x122)-ln(-x+1)=2ln(x122)ln(x+1)=2
Step 2.1.1.2.3
Combine 1212 and 22.
ln(x22)-ln(-x+1)=2ln(x22)ln(x+1)=2
Step 2.1.1.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.1.1.2.4.1
Cancel the common factor.
ln(x22)-ln(-x+1)=2
Step 2.1.1.2.4.2
Rewrite the expression.
ln(x1)-ln(-x+1)=2
ln(x1)-ln(-x+1)=2
Step 2.1.1.2.5
Simplify.
ln(x)-ln(-x+1)=2
ln(x)-ln(-x+1)=2
ln(x)-ln(-x+1)=2
Step 2.1.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
ln(x-x+1)=2
ln(x-x+1)=2
ln(x-x+1)=2
Step 3
Rewrite ln(x-x+1)=2 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e2=x-x+1
Step 4
Cross multiply to remove the fraction.
x=e2(-x+1)
Step 5
Simplify e2(-x+1).
Tap for more steps...
Step 5.1
Apply the distributive property.
x=e2(-x)+e21
Step 5.2
Simplify the expression.
Tap for more steps...
Step 5.2.1
Multiply e2 by 1.
x=e2(-x)+e2
Step 5.2.2
Reorder factors in e2(-x)+e2.
x=-e2x+e2
x=-e2x+e2
x=-e2x+e2
Step 6
Add e2x to both sides of the equation.
x+e2x=e2
Step 7
Factor x out of x+e2x.
Tap for more steps...
Step 7.1
Factor x out of x1.
x1+e2x=e2
Step 7.2
Factor x out of e2x.
x1+xe2=e2
Step 7.3
Factor x out of x1+xe2.
x(1+e2)=e2
x(1+e2)=e2
Step 8
Divide each term in x(1+e2)=e2 by 1+e2 and simplify.
Tap for more steps...
Step 8.1
Divide each term in x(1+e2)=e2 by 1+e2.
x(1+e2)1+e2=e21+e2
Step 8.2
Simplify the left side.
Tap for more steps...
Step 8.2.1
Cancel the common factor of 1+e2.
Tap for more steps...
Step 8.2.1.1
Cancel the common factor.
x(1+e2)1+e2=e21+e2
Step 8.2.1.2
Divide x by 1.
x=e21+e2
x=e21+e2
x=e21+e2
x=e21+e2
Step 9
The result can be shown in multiple forms.
Exact Form:
x=e21+e2
Decimal Form:
x=0.88079707
 [x2  12  π  xdx ]