Trigonometry Examples

Solve for x 1-(sin(x)+cos(x))^2=-sin(2x)
1-(sin(x)+cos(x))2=-sin(2x)
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Simplify 1-(sin(x)+cos(x))2.
Tap for more steps...
Step 1.1.1
Simplify each term.
Tap for more steps...
Step 1.1.1.1
Rewrite (sin(x)+cos(x))2 as (sin(x)+cos(x))(sin(x)+cos(x)).
1-((sin(x)+cos(x))(sin(x)+cos(x)))=-sin(2x)
Step 1.1.1.2
Expand (sin(x)+cos(x))(sin(x)+cos(x)) using the FOIL Method.
Tap for more steps...
Step 1.1.1.2.1
Apply the distributive property.
1-(sin(x)(sin(x)+cos(x))+cos(x)(sin(x)+cos(x)))=-sin(2x)
Step 1.1.1.2.2
Apply the distributive property.
1-(sin(x)sin(x)+sin(x)cos(x)+cos(x)(sin(x)+cos(x)))=-sin(2x)
Step 1.1.1.2.3
Apply the distributive property.
1-(sin(x)sin(x)+sin(x)cos(x)+cos(x)sin(x)+cos(x)cos(x))=-sin(2x)
1-(sin(x)sin(x)+sin(x)cos(x)+cos(x)sin(x)+cos(x)cos(x))=-sin(2x)
Step 1.1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.1.1.3.1
Simplify each term.
Tap for more steps...
Step 1.1.1.3.1.1
Multiply sin(x)sin(x).
Tap for more steps...
Step 1.1.1.3.1.1.1
Raise sin(x) to the power of 1.
1-(sin1(x)sin(x)+sin(x)cos(x)+cos(x)sin(x)+cos(x)cos(x))=-sin(2x)
Step 1.1.1.3.1.1.2
Raise sin(x) to the power of 1.
1-(sin1(x)sin1(x)+sin(x)cos(x)+cos(x)sin(x)+cos(x)cos(x))=-sin(2x)
Step 1.1.1.3.1.1.3
Use the power rule aman=am+n to combine exponents.
1-(sin(x)1+1+sin(x)cos(x)+cos(x)sin(x)+cos(x)cos(x))=-sin(2x)
Step 1.1.1.3.1.1.4
Add 1 and 1.
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos(x)cos(x))=-sin(2x)
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos(x)cos(x))=-sin(2x)
Step 1.1.1.3.1.2
Multiply cos(x)cos(x).
Tap for more steps...
Step 1.1.1.3.1.2.1
Raise cos(x) to the power of 1.
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos1(x)cos(x))=-sin(2x)
Step 1.1.1.3.1.2.2
Raise cos(x) to the power of 1.
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos1(x)cos1(x))=-sin(2x)
Step 1.1.1.3.1.2.3
Use the power rule aman=am+n to combine exponents.
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos(x)1+1)=-sin(2x)
Step 1.1.1.3.1.2.4
Add 1 and 1.
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos2(x))=-sin(2x)
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos2(x))=-sin(2x)
1-(sin2(x)+sin(x)cos(x)+cos(x)sin(x)+cos2(x))=-sin(2x)
Step 1.1.1.3.2
Reorder the factors of sin(x)cos(x).
1-(sin2(x)+cos(x)sin(x)+cos(x)sin(x)+cos2(x))=-sin(2x)
Step 1.1.1.3.3
Add cos(x)sin(x) and cos(x)sin(x).
1-(sin2(x)+2cos(x)sin(x)+cos2(x))=-sin(2x)
1-(sin2(x)+2cos(x)sin(x)+cos2(x))=-sin(2x)
Step 1.1.1.4
Move cos2(x).
1-(sin2(x)+cos2(x)+2cos(x)sin(x))=-sin(2x)
Step 1.1.1.5
Apply pythagorean identity.
1-(1+2cos(x)sin(x))=-sin(2x)
Step 1.1.1.6
Simplify each term.
Tap for more steps...
Step 1.1.1.6.1
Reorder 2cos(x) and sin(x).
1-(1+sin(x)(2cos(x)))=-sin(2x)
Step 1.1.1.6.2
Reorder sin(x) and 2.
1-(1+2sin(x)cos(x))=-sin(2x)
Step 1.1.1.6.3
Apply the sine double-angle identity.
1-(1+sin(2x))=-sin(2x)
1-(1+sin(2x))=-sin(2x)
Step 1.1.1.7
Apply the distributive property.
1-11-sin(2x)=-sin(2x)
Step 1.1.1.8
Multiply -1 by 1.
1-1-sin(2x)=-sin(2x)
1-1-sin(2x)=-sin(2x)
Step 1.1.2
Simplify by subtracting numbers.
Tap for more steps...
Step 1.1.2.1
Subtract 1 from 1.
0-sin(2x)=-sin(2x)
Step 1.1.2.2
Subtract sin(2x) from 0.
-sin(2x)=-sin(2x)
-sin(2x)=-sin(2x)
-sin(2x)=-sin(2x)
-sin(2x)=-sin(2x)
Step 2
Move all terms containing sin(2x) to the left side of the equation.
Tap for more steps...
Step 2.1
Add sin(2x) to both sides of the equation.
-sin(2x)+sin(2x)=0
Step 2.2
Add -sin(2x) and sin(2x).
0=0
0=0
Step 3
Since 0=0, the equation will always be true for any value of x.
All real numbers
Step 4
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-,)
 [x2  12  π  xdx ]