Enter a problem...
Trigonometry Examples
8cos(arcsin(x))=√64-64x28cos(arcsin(x))=√64−64x2
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
√64-64x2=8cos(arcsin(x))√64−64x2=8cos(arcsin(x))
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
√64-64x22=(8cos(arcsin(x)))2√64−64x22=(8cos(arcsin(x)))2
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √64-64x2√64−64x2 as (64-64x2)12(64−64x2)12.
((64-64x2)12)2=(8cos(arcsin(x)))2((64−64x2)12)2=(8cos(arcsin(x)))2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify ((64-64x2)12)2((64−64x2)12)2.
Step 3.2.1.1
Multiply the exponents in ((64-64x2)12)2((64−64x2)12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(64-64x2)12⋅2=(8cos(arcsin(x)))2(64−64x2)12⋅2=(8cos(arcsin(x)))2
Step 3.2.1.1.2
Cancel the common factor of 22.
Step 3.2.1.1.2.1
Cancel the common factor.
(64-64x2)12⋅2=(8cos(arcsin(x)))2
Step 3.2.1.1.2.2
Rewrite the expression.
(64-64x2)1=(8cos(arcsin(x)))2
(64-64x2)1=(8cos(arcsin(x)))2
(64-64x2)1=(8cos(arcsin(x)))2
Step 3.2.1.2
Simplify.
64-64x2=(8cos(arcsin(x)))2
64-64x2=(8cos(arcsin(x)))2
64-64x2=(8cos(arcsin(x)))2
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify (8cos(arcsin(x)))2.
Step 3.3.1.1
Write the expression using exponents.
Step 3.3.1.1.1
Draw a triangle in the plane with vertices (√12-x2,x), (√12-x2,0), and the origin. Then arcsin(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√12-x2,x). Therefore, cos(arcsin(x)) is √1-x2.
64-64x2=(8√1-x2)2
Step 3.3.1.1.2
Rewrite 1 as 12.
64-64x2=(8√12-x2)2
64-64x2=(8√12-x2)2
Step 3.3.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=x.
64-64x2=(8√(1+x)(1-x))2
Step 3.3.1.3
Simplify by cancelling exponent with radical.
Step 3.3.1.3.1
Apply the product rule to 8√(1+x)(1-x).
64-64x2=82√(1+x)(1-x)2
Step 3.3.1.3.2
Raise 8 to the power of 2.
64-64x2=64√(1+x)(1-x)2
Step 3.3.1.3.3
Rewrite √(1+x)(1-x)2 as (1+x)(1-x).
Step 3.3.1.3.3.1
Use n√ax=axn to rewrite √(1+x)(1-x) as ((1+x)(1-x))12.
64-64x2=64(((1+x)(1-x))12)2
Step 3.3.1.3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
64-64x2=64((1+x)(1-x))12⋅2
Step 3.3.1.3.3.3
Combine 12 and 2.
64-64x2=64((1+x)(1-x))22
Step 3.3.1.3.3.4
Cancel the common factor of 2.
Step 3.3.1.3.3.4.1
Cancel the common factor.
64-64x2=64((1+x)(1-x))22
Step 3.3.1.3.3.4.2
Rewrite the expression.
64-64x2=64((1+x)(1-x))1
64-64x2=64((1+x)(1-x))1
Step 3.3.1.3.3.5
Simplify.
64-64x2=64((1+x)(1-x))
64-64x2=64((1+x)(1-x))
64-64x2=64((1+x)(1-x))
Step 3.3.1.4
Expand (1+x)(1-x) using the FOIL Method.
Step 3.3.1.4.1
Apply the distributive property.
64-64x2=64(1(1-x)+x(1-x))
Step 3.3.1.4.2
Apply the distributive property.
64-64x2=64(1⋅1+1(-x)+x(1-x))
Step 3.3.1.4.3
Apply the distributive property.
64-64x2=64(1⋅1+1(-x)+x⋅1+x(-x))
64-64x2=64(1⋅1+1(-x)+x⋅1+x(-x))
Step 3.3.1.5
Simplify and combine like terms.
Step 3.3.1.5.1
Simplify each term.
Step 3.3.1.5.1.1
Multiply 1 by 1.
64-64x2=64(1+1(-x)+x⋅1+x(-x))
Step 3.3.1.5.1.2
Multiply -x by 1.
64-64x2=64(1-x+x⋅1+x(-x))
Step 3.3.1.5.1.3
Multiply x by 1.
64-64x2=64(1-x+x+x(-x))
Step 3.3.1.5.1.4
Rewrite using the commutative property of multiplication.
64-64x2=64(1-x+x-x⋅x)
Step 3.3.1.5.1.5
Multiply x by x by adding the exponents.
Step 3.3.1.5.1.5.1
Move x.
64-64x2=64(1-x+x-(x⋅x))
Step 3.3.1.5.1.5.2
Multiply x by x.
64-64x2=64(1-x+x-x2)
64-64x2=64(1-x+x-x2)
64-64x2=64(1-x+x-x2)
Step 3.3.1.5.2
Add -x and x.
64-64x2=64(1+0-x2)
Step 3.3.1.5.3
Add 1 and 0.
64-64x2=64(1-x2)
64-64x2=64(1-x2)
Step 3.3.1.6
Apply the distributive property.
64-64x2=64⋅1+64(-x2)
Step 3.3.1.7
Multiply.
Step 3.3.1.7.1
Multiply 64 by 1.
64-64x2=64+64(-x2)
Step 3.3.1.7.2
Multiply -1 by 64.
64-64x2=64-64x2
64-64x2=64-64x2
64-64x2=64-64x2
64-64x2=64-64x2
64-64x2=64-64x2
Step 4
Step 4.1
Move all terms containing x to the left side of the equation.
Step 4.1.1
Add 64x2 to both sides of the equation.
64-64x2+64x2=64
Step 4.1.2
Combine the opposite terms in 64-64x2+64x2.
Step 4.1.2.1
Add -64x2 and 64x2.
64+0=64
Step 4.1.2.2
Add 64 and 0.
64=64
64=64
64=64
Step 4.2
Since 64=64, the equation will always be true for any value of x.
All real numbers
All real numbers
Step 5
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-∞,∞)