Trigonometry Examples

Solve for x 8cos(arcsin(x)) = square root of 64-64x^2
8cos(arcsin(x))=64-64x28cos(arcsin(x))=6464x2
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
64-64x2=8cos(arcsin(x))6464x2=8cos(arcsin(x))
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
64-64x22=(8cos(arcsin(x)))26464x22=(8cos(arcsin(x)))2
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use nax=axnnax=axn to rewrite 64-64x26464x2 as (64-64x2)12(6464x2)12.
((64-64x2)12)2=(8cos(arcsin(x)))2((6464x2)12)2=(8cos(arcsin(x)))2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify ((64-64x2)12)2((6464x2)12)2.
Tap for more steps...
Step 3.2.1.1
Multiply the exponents in ((64-64x2)12)2((6464x2)12)2.
Tap for more steps...
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(64-64x2)122=(8cos(arcsin(x)))2(6464x2)122=(8cos(arcsin(x)))2
Step 3.2.1.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
(64-64x2)122=(8cos(arcsin(x)))2
Step 3.2.1.1.2.2
Rewrite the expression.
(64-64x2)1=(8cos(arcsin(x)))2
(64-64x2)1=(8cos(arcsin(x)))2
(64-64x2)1=(8cos(arcsin(x)))2
Step 3.2.1.2
Simplify.
64-64x2=(8cos(arcsin(x)))2
64-64x2=(8cos(arcsin(x)))2
64-64x2=(8cos(arcsin(x)))2
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify (8cos(arcsin(x)))2.
Tap for more steps...
Step 3.3.1.1
Write the expression using exponents.
Tap for more steps...
Step 3.3.1.1.1
Draw a triangle in the plane with vertices (12-x2,x), (12-x2,0), and the origin. Then arcsin(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (12-x2,x). Therefore, cos(arcsin(x)) is 1-x2.
64-64x2=(81-x2)2
Step 3.3.1.1.2
Rewrite 1 as 12.
64-64x2=(812-x2)2
64-64x2=(812-x2)2
Step 3.3.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=x.
64-64x2=(8(1+x)(1-x))2
Step 3.3.1.3
Simplify by cancelling exponent with radical.
Tap for more steps...
Step 3.3.1.3.1
Apply the product rule to 8(1+x)(1-x).
64-64x2=82(1+x)(1-x)2
Step 3.3.1.3.2
Raise 8 to the power of 2.
64-64x2=64(1+x)(1-x)2
Step 3.3.1.3.3
Rewrite (1+x)(1-x)2 as (1+x)(1-x).
Tap for more steps...
Step 3.3.1.3.3.1
Use nax=axn to rewrite (1+x)(1-x) as ((1+x)(1-x))12.
64-64x2=64(((1+x)(1-x))12)2
Step 3.3.1.3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
64-64x2=64((1+x)(1-x))122
Step 3.3.1.3.3.3
Combine 12 and 2.
64-64x2=64((1+x)(1-x))22
Step 3.3.1.3.3.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.1.3.3.4.1
Cancel the common factor.
64-64x2=64((1+x)(1-x))22
Step 3.3.1.3.3.4.2
Rewrite the expression.
64-64x2=64((1+x)(1-x))1
64-64x2=64((1+x)(1-x))1
Step 3.3.1.3.3.5
Simplify.
64-64x2=64((1+x)(1-x))
64-64x2=64((1+x)(1-x))
64-64x2=64((1+x)(1-x))
Step 3.3.1.4
Expand (1+x)(1-x) using the FOIL Method.
Tap for more steps...
Step 3.3.1.4.1
Apply the distributive property.
64-64x2=64(1(1-x)+x(1-x))
Step 3.3.1.4.2
Apply the distributive property.
64-64x2=64(11+1(-x)+x(1-x))
Step 3.3.1.4.3
Apply the distributive property.
64-64x2=64(11+1(-x)+x1+x(-x))
64-64x2=64(11+1(-x)+x1+x(-x))
Step 3.3.1.5
Simplify and combine like terms.
Tap for more steps...
Step 3.3.1.5.1
Simplify each term.
Tap for more steps...
Step 3.3.1.5.1.1
Multiply 1 by 1.
64-64x2=64(1+1(-x)+x1+x(-x))
Step 3.3.1.5.1.2
Multiply -x by 1.
64-64x2=64(1-x+x1+x(-x))
Step 3.3.1.5.1.3
Multiply x by 1.
64-64x2=64(1-x+x+x(-x))
Step 3.3.1.5.1.4
Rewrite using the commutative property of multiplication.
64-64x2=64(1-x+x-xx)
Step 3.3.1.5.1.5
Multiply x by x by adding the exponents.
Tap for more steps...
Step 3.3.1.5.1.5.1
Move x.
64-64x2=64(1-x+x-(xx))
Step 3.3.1.5.1.5.2
Multiply x by x.
64-64x2=64(1-x+x-x2)
64-64x2=64(1-x+x-x2)
64-64x2=64(1-x+x-x2)
Step 3.3.1.5.2
Add -x and x.
64-64x2=64(1+0-x2)
Step 3.3.1.5.3
Add 1 and 0.
64-64x2=64(1-x2)
64-64x2=64(1-x2)
Step 3.3.1.6
Apply the distributive property.
64-64x2=641+64(-x2)
Step 3.3.1.7
Multiply.
Tap for more steps...
Step 3.3.1.7.1
Multiply 64 by 1.
64-64x2=64+64(-x2)
Step 3.3.1.7.2
Multiply -1 by 64.
64-64x2=64-64x2
64-64x2=64-64x2
64-64x2=64-64x2
64-64x2=64-64x2
64-64x2=64-64x2
Step 4
Solve for x.
Tap for more steps...
Step 4.1
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 4.1.1
Add 64x2 to both sides of the equation.
64-64x2+64x2=64
Step 4.1.2
Combine the opposite terms in 64-64x2+64x2.
Tap for more steps...
Step 4.1.2.1
Add -64x2 and 64x2.
64+0=64
Step 4.1.2.2
Add 64 and 0.
64=64
64=64
64=64
Step 4.2
Since 64=64, the equation will always be true for any value of x.
All real numbers
All real numbers
Step 5
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-,)
 [x2  12  π  xdx ]