Trigonometry Examples

Solve for x arccos(x)+2arcsin(( square root of 3)/2)=pi/3
arccos(x)+2arcsin(32)=π3arccos(x)+2arcsin(32)=π3
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
The exact value of arcsin(32)arcsin(32) is π3π3.
arccos(x)+2π3=π3arccos(x)+2π3=π3
Step 1.1.2
Combine 22 and π3π3.
arccos(x)+2π3=π3arccos(x)+2π3=π3
arccos(x)+2π3=π3arccos(x)+2π3=π3
arccos(x)+2π3=π3arccos(x)+2π3=π3
Step 2
Move all terms not containing xx to the right side of the equation.
Tap for more steps...
Step 2.1
Subtract 2π32π3 from both sides of the equation.
arccos(x)=π3-2π3arccos(x)=π32π3
Step 2.2
Combine the numerators over the common denominator.
arccos(x)=π-2π3arccos(x)=π2π3
Step 2.3
Subtract 2π2π from ππ.
arccos(x)=-π3arccos(x)=π3
Step 2.4
Move the negative in front of the fraction.
arccos(x)=-π3
arccos(x)=-π3
Step 3
Take the inverse arccosine of both sides of the equation to extract x from inside the arccosine.
x=cos(-π3)
Step 4
Simplify the right side.
Tap for more steps...
Step 4.1
Simplify cos(-π3).
Tap for more steps...
Step 4.1.1
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
x=cos(5π3)
Step 4.1.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
x=cos(π3)
Step 4.1.3
The exact value of cos(π3) is 12.
x=12
x=12
x=12
Step 5
Exclude the solutions that do not make arccos(x)+2arcsin(32)=π3 true.
No solution
 [x2  12  π  xdx ]