Enter a problem...
Trigonometry Examples
-4arcsin(x)=π−4arcsin(x)=π
Step 1
Step 1.1
Divide each term in -4arcsin(x)=π−4arcsin(x)=π by -4−4.
-4arcsin(x)-4=π-4−4arcsin(x)−4=π−4
Step 1.2
Simplify the left side.
Step 1.2.1
Cancel the common factor of -4−4.
Step 1.2.1.1
Cancel the common factor.
-4arcsin(x)-4=π-4
Step 1.2.1.2
Divide arcsin(x) by 1.
arcsin(x)=π-4
arcsin(x)=π-4
arcsin(x)=π-4
Step 1.3
Simplify the right side.
Step 1.3.1
Move the negative in front of the fraction.
arcsin(x)=-π4
arcsin(x)=-π4
arcsin(x)=-π4
Step 2
Take the inverse arcsine of both sides of the equation to extract x from inside the arcsine.
x=sin(-π4)
Step 3
Step 3.1
Simplify sin(-π4).
Step 3.1.1
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
x=sin(7π4)
Step 3.1.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
x=-sin(π4)
Step 3.1.3
The exact value of sin(π4) is √22.
x=-√22
x=-√22
x=-√22
Step 4
The result can be shown in multiple forms.
Exact Form:
x=-√22
Decimal Form:
x=-0.70710678…