Enter a problem...
Trigonometry Examples
sin(x)cos(x)=√34sin(x)cos(x)=√34
Step 1
Step 1.1
Multiply each term in sin(x)cos(x)=√34 by 2.
sin(x)cos(x)⋅2=√34⋅2
Step 1.2
Simplify the left side.
Step 1.2.1
Reorder sin(x)cos(x) and 2.
2⋅(sin(x)cos(x))=√34⋅2
Step 1.2.2
Apply the sine double-angle identity.
sin(2x)=√34⋅2
sin(2x)=√34⋅2
Step 1.3
Simplify the right side.
Step 1.3.1
Rewrite √34 as √3√4.
sin(2x)=√3√4⋅2
Step 1.3.2
Simplify the denominator.
Step 1.3.2.1
Rewrite 4 as 22.
sin(2x)=√3√22⋅2
Step 1.3.2.2
Pull terms out from under the radical, assuming positive real numbers.
sin(2x)=√32⋅2
sin(2x)=√32⋅2
Step 1.3.3
Cancel the common factor of 2.
Step 1.3.3.1
Cancel the common factor.
sin(2x)=√32⋅2
Step 1.3.3.2
Rewrite the expression.
sin(2x)=√3
sin(2x)=√3
sin(2x)=√3
sin(2x)=√3
Step 2
The range of sine is -1≤y≤1. Since √3 does not fall in this range, there is no solution.
No solution