Enter a problem...
Trigonometry Examples
tan(x)=58tan(x)=58
Step 1
Take the inverse tangent of both sides of the equation to extract xx from inside the tangent.
x=arctan(58)x=arctan(58)
Step 2
Step 2.1
Evaluate arctan(58)arctan(58).
x=0.55859931x=0.55859931
x=0.55859931x=0.55859931
Step 3
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from ππ to find the solution in the fourth quadrant.
x=(3.14159265)+0.55859931x=(3.14159265)+0.55859931
Step 4
Step 4.1
Remove parentheses.
x=3.14159265+0.55859931x=3.14159265+0.55859931
Step 4.2
Remove parentheses.
x=(3.14159265)+0.55859931x=(3.14159265)+0.55859931
Step 4.3
Add 3.141592653.14159265 and 0.558599310.55859931.
x=3.70019196x=3.70019196
x=3.70019196x=3.70019196
Step 5
Step 5.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 5.2
Replace bb with 11 in the formula for period.
π|1|π|1|
Step 5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
π1π1
Step 5.4
Divide ππ by 11.
ππ
ππ
Step 6
The period of the tan(x)tan(x) function is ππ so values will repeat every ππ radians in both directions.
x=0.55859931+πn,3.70019196+πnx=0.55859931+πn,3.70019196+πn, for any integer nn
Step 7
Consolidate 0.55859931+πn0.55859931+πn and 3.70019196+πn to 0.55859931+πn.
x=0.55859931+πn, for any integer n