Trigonometry Examples

Solve for x tan(x)=5/8
tan(x)=58tan(x)=58
Step 1
Take the inverse tangent of both sides of the equation to extract xx from inside the tangent.
x=arctan(58)x=arctan(58)
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
Evaluate arctan(58)arctan(58).
x=0.55859931x=0.55859931
x=0.55859931x=0.55859931
Step 3
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from ππ to find the solution in the fourth quadrant.
x=(3.14159265)+0.55859931x=(3.14159265)+0.55859931
Step 4
Solve for xx.
Tap for more steps...
Step 4.1
Remove parentheses.
x=3.14159265+0.55859931x=3.14159265+0.55859931
Step 4.2
Remove parentheses.
x=(3.14159265)+0.55859931x=(3.14159265)+0.55859931
Step 4.3
Add 3.141592653.14159265 and 0.558599310.55859931.
x=3.70019196x=3.70019196
x=3.70019196x=3.70019196
Step 5
Find the period of tan(x)tan(x).
Tap for more steps...
Step 5.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 5.2
Replace bb with 11 in the formula for period.
π|1|π|1|
Step 5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
π1π1
Step 5.4
Divide ππ by 11.
ππ
ππ
Step 6
The period of the tan(x)tan(x) function is ππ so values will repeat every ππ radians in both directions.
x=0.55859931+πn,3.70019196+πnx=0.55859931+πn,3.70019196+πn, for any integer nn
Step 7
Consolidate 0.55859931+πn0.55859931+πn and 3.70019196+πn to 0.55859931+πn.
x=0.55859931+πn, for any integer n
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]