Enter a problem...
Trigonometry Examples
Step 1
Rewrite the equation as .
Step 2
Step 2.1
To write as a fraction with a common denominator, multiply by .
Step 2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.3.1
Multiply by .
Step 2.3.2
Multiply by .
Step 2.3.3
Multiply by .
Step 2.3.4
Multiply by .
Step 2.4
Combine the numerators over the common denominator.
Step 2.5
Simplify the numerator.
Step 2.5.1
Multiply by .
Step 2.5.2
Multiply by .
Step 2.5.3
Subtract from .
Step 2.6
The exact value of is .
Step 2.6.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the second quadrant.
Step 2.6.2
Split into two angles where the values of the six trigonometric functions are known.
Step 2.6.3
Apply the difference of angles identity.
Step 2.6.4
The exact value of is .
Step 2.6.5
The exact value of is .
Step 2.6.6
The exact value of is .
Step 2.6.7
The exact value of is .
Step 2.6.8
The exact value of is .
Step 2.6.9
The exact value of is .
Step 2.6.10
The exact value of is .
Step 2.6.11
The exact value of is .
Step 2.6.12
Simplify .
Step 2.6.12.1
Simplify the numerator.
Step 2.6.12.1.1
Multiply by .
Step 2.6.12.1.2
Combine and .
Step 2.6.12.1.3
Combine and .
Step 2.6.12.2
Simplify the denominator.
Step 2.6.12.2.1
Move to the left of .
Step 2.6.12.2.2
Multiply by .
Step 2.6.12.2.3
Combine and simplify the denominator.
Step 2.6.12.2.3.1
Multiply by .
Step 2.6.12.2.3.2
Raise to the power of .
Step 2.6.12.2.3.3
Raise to the power of .
Step 2.6.12.2.3.4
Use the power rule to combine exponents.
Step 2.6.12.2.3.5
Add and .
Step 2.6.12.2.3.6
Rewrite as .
Step 2.6.12.2.3.6.1
Use to rewrite as .
Step 2.6.12.2.3.6.2
Apply the power rule and multiply exponents, .
Step 2.6.12.2.3.6.3
Combine and .
Step 2.6.12.2.3.6.4
Cancel the common factor of .
Step 2.6.12.2.3.6.4.1
Cancel the common factor.
Step 2.6.12.2.3.6.4.2
Rewrite the expression.
Step 2.6.12.2.3.6.5
Evaluate the exponent.
Step 2.6.12.2.4
Cancel the common factor of .
Step 2.6.12.2.4.1
Cancel the common factor.
Step 2.6.12.2.4.2
Rewrite the expression.
Step 2.6.12.2.5
Combine and .
Step 2.6.12.2.6
Combine and .
Step 2.6.12.2.7
Multiply by .
Step 2.6.12.2.8
Combine and simplify the denominator.
Step 2.6.12.2.8.1
Multiply by .
Step 2.6.12.2.8.2
Raise to the power of .
Step 2.6.12.2.8.3
Raise to the power of .
Step 2.6.12.2.8.4
Use the power rule to combine exponents.
Step 2.6.12.2.8.5
Add and .
Step 2.6.12.2.8.6
Rewrite as .
Step 2.6.12.2.8.6.1
Use to rewrite as .
Step 2.6.12.2.8.6.2
Apply the power rule and multiply exponents, .
Step 2.6.12.2.8.6.3
Combine and .
Step 2.6.12.2.8.6.4
Cancel the common factor of .
Step 2.6.12.2.8.6.4.1
Cancel the common factor.
Step 2.6.12.2.8.6.4.2
Rewrite the expression.
Step 2.6.12.2.8.6.5
Evaluate the exponent.
Step 2.6.12.2.9
Simplify the numerator.
Step 2.6.12.2.9.1
Combine using the product rule for radicals.
Step 2.6.12.2.9.2
Multiply by .
Step 2.6.12.2.10
To write as a fraction with a common denominator, multiply by .
Step 2.6.12.2.11
Combine and .
Step 2.6.12.2.12
Combine the numerators over the common denominator.
Step 2.6.12.2.13
Multiply by .
Step 2.6.12.3
Simplify the numerator.
Step 2.6.12.3.1
Multiply by .
Step 2.6.12.3.2
Multiply by .
Step 2.6.12.4
Simplify the denominator.
Step 2.6.12.4.1
Combine using the product rule for radicals.
Step 2.6.12.4.2
Multiply by .
Step 2.6.12.5
Simplify the numerator.
Step 2.6.12.5.1
Combine and into a single radical.
Step 2.6.12.5.2
Cancel the common factor of and .
Step 2.6.12.5.2.1
Factor out of .
Step 2.6.12.5.2.2
Cancel the common factors.
Step 2.6.12.5.2.2.1
Factor out of .
Step 2.6.12.5.2.2.2
Cancel the common factor.
Step 2.6.12.5.2.2.3
Rewrite the expression.
Step 2.6.12.5.3
Rewrite as .
Step 2.6.12.5.4
Any root of is .
Step 2.6.12.5.5
Multiply by .
Step 2.6.12.5.6
Combine and simplify the denominator.
Step 2.6.12.5.6.1
Multiply by .
Step 2.6.12.5.6.2
Raise to the power of .
Step 2.6.12.5.6.3
Raise to the power of .
Step 2.6.12.5.6.4
Use the power rule to combine exponents.
Step 2.6.12.5.6.5
Add and .
Step 2.6.12.5.6.6
Rewrite as .
Step 2.6.12.5.6.6.1
Use to rewrite as .
Step 2.6.12.5.6.6.2
Apply the power rule and multiply exponents, .
Step 2.6.12.5.6.6.3
Combine and .
Step 2.6.12.5.6.6.4
Cancel the common factor of .
Step 2.6.12.5.6.6.4.1
Cancel the common factor.
Step 2.6.12.5.6.6.4.2
Rewrite the expression.
Step 2.6.12.5.6.6.5
Evaluate the exponent.
Step 2.6.12.5.7
Combine and .
Step 2.6.12.6
Multiply the numerator by the reciprocal of the denominator.
Step 2.6.12.7
Cancel the common factor of .
Step 2.6.12.7.1
Cancel the common factor.
Step 2.6.12.7.2
Rewrite the expression.
Step 2.6.12.8
Combine and .
Step 2.6.12.9
Combine and .
Step 2.6.12.10
Cancel the common factor of and .
Step 2.6.12.10.1
Factor out of .
Step 2.6.12.10.2
Cancel the common factors.
Step 2.6.12.10.2.1
Factor out of .
Step 2.6.12.10.2.2
Factor out of .
Step 2.6.12.10.2.3
Factor out of .
Step 2.6.12.10.2.4
Cancel the common factor.
Step 2.6.12.10.2.5
Rewrite the expression.
Step 2.6.12.11
Multiply by .
Step 2.6.12.12
Multiply by .
Step 2.6.12.13
Expand the denominator using the FOIL method.
Step 2.6.12.14
Simplify.
Step 2.6.12.15
Cancel the common factor of and .
Step 2.6.12.15.1
Factor out of .
Step 2.6.12.15.2
Cancel the common factors.
Step 2.6.12.15.2.1
Factor out of .
Step 2.6.12.15.2.2
Cancel the common factor.
Step 2.6.12.15.2.3
Rewrite the expression.
Step 2.6.12.16
Apply the distributive property.
Step 2.6.12.17
Multiply .
Step 2.6.12.17.1
Combine using the product rule for radicals.
Step 2.6.12.17.2
Multiply by .
Step 2.6.12.18
Multiply .
Step 2.6.12.18.1
Combine using the product rule for radicals.
Step 2.6.12.18.2
Multiply by .
Step 2.6.12.19
Simplify each term.
Step 2.6.12.19.1
Rewrite as .
Step 2.6.12.19.1.1
Factor out of .
Step 2.6.12.19.1.2
Rewrite as .
Step 2.6.12.19.2
Pull terms out from under the radical.
Step 2.6.12.19.3
Multiply by .
Step 2.6.12.20
Cancel the common factor of and .
Step 2.6.12.20.1
Factor out of .
Step 2.6.12.20.2
Factor out of .
Step 2.6.12.20.3
Factor out of .
Step 2.6.12.20.4
Cancel the common factors.
Step 2.6.12.20.4.1
Factor out of .
Step 2.6.12.20.4.2
Cancel the common factor.
Step 2.6.12.20.4.3
Rewrite the expression.
Step 2.6.12.20.4.4
Divide by .
Step 2.6.12.21
Apply the distributive property.
Step 2.6.12.22
Multiply .
Step 2.6.12.22.1
Multiply by .
Step 2.6.12.22.2
Multiply by .
Step 3
Convert the right side of the equation to its decimal equivalent.
Step 4
Take the inverse cosecant of both sides of the equation to extract from inside the cosecant.
Step 5
Step 5.1
Evaluate .
Step 6
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 7
Step 7.1
Subtract from .
Step 7.2
The resulting angle of is positive, less than , and coterminal with .
Step 8
Step 8.1
The period of the function can be calculated using .
Step 8.2
Replace with in the formula for period.
Step 8.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 8.4
Divide by .
Step 9
Step 9.1
Add to to find the positive angle.
Step 9.2
To write as a fraction with a common denominator, multiply by .
Step 9.3
Combine fractions.
Step 9.3.1
Combine and .
Step 9.3.2
Combine the numerators over the common denominator.
Step 9.4
Simplify the numerator.
Step 9.4.1
Multiply by .
Step 9.4.2
Subtract from .
Step 9.5
List the new angles.
Step 10
The period of the function is so values will repeat every radians in both directions.
, for any integer