Enter a problem...
Trigonometry Examples
sin(x2)=√1-cos(x)2sin(x2)=√1−cos(x)2
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
√1-cos(x)2=sin(x2)√1−cos(x)2=sin(x2)
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
√1-cos(x)22=sin2(x2)√1−cos(x)22=sin2(x2)
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √1-cos(x)2√1−cos(x)2 as (1-cos(x)2)12(1−cos(x)2)12.
((1-cos(x)2)12)2=sin2(x2)((1−cos(x)2)12)2=sin2(x2)
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify ((1-cos(x)2)12)2((1−cos(x)2)12)2.
Step 3.2.1.1
Multiply the exponents in ((1-cos(x)2)12)2((1−cos(x)2)12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(1-cos(x)2)12⋅2=sin2(x2)(1−cos(x)2)12⋅2=sin2(x2)
Step 3.2.1.1.2
Cancel the common factor of 22.
Step 3.2.1.1.2.1
Cancel the common factor.
(1-cos(x)2)12⋅2=sin2(x2)
Step 3.2.1.1.2.2
Rewrite the expression.
(1-cos(x)2)1=sin2(x2)
(1-cos(x)2)1=sin2(x2)
(1-cos(x)2)1=sin2(x2)
Step 3.2.1.2
Simplify.
1-cos(x)2=sin2(x2)
1-cos(x)2=sin2(x2)
1-cos(x)2=sin2(x2)
1-cos(x)2=sin2(x2)
Step 4
Step 4.1
Subtract sin2(x2) from both sides of the equation.
1-cos(x)2-sin2(x2)=0
Step 4.2
Simplify 1-cos(x)2-sin2(x2).
Step 4.2.1
To write -sin2(x2) as a fraction with a common denominator, multiply by 22.
1-cos(x)2-sin2(x2)⋅22=0
Step 4.2.2
Combine -sin2(x2) and 22.
1-cos(x)2+-sin2(x2)⋅22=0
Step 4.2.3
Combine the numerators over the common denominator.
1-cos(x)-sin2(x2)⋅22=0
Step 4.2.4
Simplify the numerator.
Step 4.2.4.1
Multiply 2 by -1.
1-cos(x)-2sin2(x2)2=0
Step 4.2.4.2
Move -2sin2(x2).
1-2sin2(x2)-cos(x)2=0
Step 4.2.4.3
Apply the cosine double-angle identity.
cos(2x2)-cos(x)2=0
Step 4.2.4.4
Cancel the common factor of 2.
Step 4.2.4.4.1
Cancel the common factor.
cos(2x2)-cos(x)2=0
Step 4.2.4.4.2
Rewrite the expression.
cos(x)-cos(x)2=0
cos(x)-cos(x)2=0
Step 4.2.4.5
Subtract cos(x) from cos(x).
02=0
02=0
Step 4.2.5
Divide 0 by 2.
0=0
0=0
Step 4.3
Since 0=0, the equation will always be true for any value of x.
All real numbers
All real numbers
Step 5
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-∞,∞)