Trigonometry Examples

Solve over the Interval 2(2sin(x)sin(x))sin(x)-3cos(x)=0 , [0,2pi]
2(2sin(x)sin(x))sin(x)-3cos(x)=0 , [0,2π]
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Multiply sin(x) by sin(x) by adding the exponents.
Tap for more steps...
Step 1.1.1
Move sin(x).
2(2(sin(x)sin(x)))sin(x)-3cos(x)=0
Step 1.1.2
Multiply sin(x) by sin(x).
2(2sin2(x))sin(x)-3cos(x)=0
2(2sin2(x))sin(x)-3cos(x)=0
Step 1.2
Multiply sin2(x) by sin(x) by adding the exponents.
Tap for more steps...
Step 1.2.1
Move sin(x).
2(2(sin(x)sin2(x)))-3cos(x)=0
Step 1.2.2
Multiply sin(x) by sin2(x).
Tap for more steps...
Step 1.2.2.1
Raise sin(x) to the power of 1.
2(2(sin1(x)sin2(x)))-3cos(x)=0
Step 1.2.2.2
Use the power rule aman=am+n to combine exponents.
2(2sin(x)1+2)-3cos(x)=0
2(2sin(x)1+2)-3cos(x)=0
Step 1.2.3
Add 1 and 2.
2(2sin3(x))-3cos(x)=0
2(2sin3(x))-3cos(x)=0
Step 1.3
Multiply 2 by 2.
4sin3(x)-3cos(x)=0
4sin3(x)-3cos(x)=0
Step 2
Graph each side of the equation. The solution is the x-value of the point of intersection.
x0.89164272+πn, for any integer n
Step 3
Find the values of n that produce a value within the interval [0,2π].
Tap for more steps...
Step 3.1
Plug in 0 for n and simplify to see if the solution is contained in [0,2π].
Tap for more steps...
Step 3.1.1
Plug in 0 for n.
0.89164272+π(0)
Step 3.1.2
Simplify.
Tap for more steps...
Step 3.1.2.1
Multiply π by 0.
0.89164272+0
Step 3.1.2.2
Add 0.89164272 and 0.
0.89164272
0.89164272
Step 3.1.3
The interval [0,2π] contains 0.89164272.
x=0.89164272
x=0.89164272
Step 3.2
Plug in 1 for n and simplify to see if the solution is contained in [0,2π].
Tap for more steps...
Step 3.2.1
Plug in 1 for n.
0.89164272+π(1)
Step 3.2.2
Simplify.
Tap for more steps...
Step 3.2.2.1
Multiply π by 1.
0.89164272+π
Step 3.2.2.2
Replace with decimal approximation.
0.89164272+3.14159265
Step 3.2.2.3
Add 0.89164272 and 3.14159265.
4.03323537
4.03323537
Step 3.2.3
The interval [0,2π] contains 4.03323537.
x=0.89164272,4.03323537
x=0.89164272,4.03323537
x=0.89164272,4.03323537
Step 4
 [x2  12  π  xdx ]