Enter a problem...
Trigonometry Examples
Step 1
Use the definition of tangent to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
Step 2
Find the hypotenuse of the unit circle triangle. Since the opposite and adjacent sides are known, use the Pythagorean theorem to find the remaining side.
Step 3
Replace the known values in the equation.
Step 4
Step 4.1
Raise to the power of .
Hypotenuse
Step 4.2
Raise to the power of .
Hypotenuse
Step 4.3
Add and .
Hypotenuse
Hypotenuse
Step 5
Step 5.1
Use the definition of sine to find the value of .
Step 5.2
Substitute in the known values.
Step 5.3
Simplify the value of .
Step 5.3.1
Move the negative in front of the fraction.
Step 5.3.2
Multiply by .
Step 5.3.3
Combine and simplify the denominator.
Step 5.3.3.1
Multiply by .
Step 5.3.3.2
Raise to the power of .
Step 5.3.3.3
Raise to the power of .
Step 5.3.3.4
Use the power rule to combine exponents.
Step 5.3.3.5
Add and .
Step 5.3.3.6
Rewrite as .
Step 5.3.3.6.1
Use to rewrite as .
Step 5.3.3.6.2
Apply the power rule and multiply exponents, .
Step 5.3.3.6.3
Combine and .
Step 5.3.3.6.4
Cancel the common factor of .
Step 5.3.3.6.4.1
Cancel the common factor.
Step 5.3.3.6.4.2
Rewrite the expression.
Step 5.3.3.6.5
Evaluate the exponent.
Step 5.3.4
Multiply by .
Step 5.3.5
Simplify the expression.
Step 5.3.5.1
Divide by .
Step 5.3.5.2
Multiply by .
Step 6
Step 6.1
Use the definition of cosine to find the value of .
Step 6.2
Substitute in the known values.
Step 6.3
Simplify the value of .
Step 6.3.1
Move the negative in front of the fraction.
Step 6.3.2
Multiply by .
Step 6.3.3
Combine and simplify the denominator.
Step 6.3.3.1
Multiply by .
Step 6.3.3.2
Raise to the power of .
Step 6.3.3.3
Raise to the power of .
Step 6.3.3.4
Use the power rule to combine exponents.
Step 6.3.3.5
Add and .
Step 6.3.3.6
Rewrite as .
Step 6.3.3.6.1
Use to rewrite as .
Step 6.3.3.6.2
Apply the power rule and multiply exponents, .
Step 6.3.3.6.3
Combine and .
Step 6.3.3.6.4
Cancel the common factor of .
Step 6.3.3.6.4.1
Cancel the common factor.
Step 6.3.3.6.4.2
Rewrite the expression.
Step 6.3.3.6.5
Evaluate the exponent.
Step 6.3.4
Evaluate the root.
Step 6.3.5
Multiply by .
Step 6.3.6
Divide by .
Step 6.3.7
Multiply by .
Step 7
Divide by .
Step 8
Step 8.1
Use the definition of cotangent to find the value of .
Step 8.2
Substitute in the known values.
Step 8.3
Divide by .
Step 9
Step 9.1
Use the definition of secant to find the value of .
Step 9.2
Substitute in the known values.
Step 9.3
Move the negative in front of the fraction.
Step 10
Step 10.1
Use the definition of cosecant to find the value of .
Step 10.2
Substitute in the known values.
Step 10.3
Simplify the value of .
Step 10.3.1
Move the negative in front of the fraction.
Step 10.3.2
Evaluate the root.
Step 10.3.3
Divide by .
Step 10.3.4
Multiply by .
Step 11
This is the solution to each trig value.