Enter a problem...
Trigonometry Examples
Step 1
For any , vertical asymptotes occur at , where is an integer. Use the basic period for , , to find the vertical asymptotes for . Set the inside of the tangent function, , for equal to to find where the vertical asymptote occurs for .
Step 2
Step 2.1
Move all terms not containing to the right side of the equation.
Step 2.1.1
Add to both sides of the equation.
Step 2.1.2
Combine the numerators over the common denominator.
Step 2.1.3
Add and .
Step 2.1.4
Divide by .
Step 2.2
Divide each term in by and simplify.
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of .
Step 2.2.2.1.1
Cancel the common factor.
Step 2.2.2.1.2
Divide by .
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Divide by .
Step 3
Set the inside of the tangent function equal to .
Step 4
Step 4.1
Move all terms not containing to the right side of the equation.
Step 4.1.1
Add to both sides of the equation.
Step 4.1.2
Combine the numerators over the common denominator.
Step 4.1.3
Add and .
Step 4.1.4
Cancel the common factor of .
Step 4.1.4.1
Cancel the common factor.
Step 4.1.4.2
Divide by .
Step 4.2
Divide each term in by and simplify.
Step 4.2.1
Divide each term in by .
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of .
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Divide by .
Step 5
The basic period for will occur at , where and are vertical asymptotes.
Step 6
The absolute value is the distance between a number and zero. The distance between and is .
Step 7
The vertical asymptotes for occur at , , and every , where is an integer.
Step 8
Tangent only has vertical asymptotes.
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: where is an integer
Step 9