Trigonometry Examples

Expand Using Sum/Difference Formulas sin(pi/12)
sin(π12)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, π12 can be split into π3-π4.
sin(π3-π4)
Step 2
Use the difference formula for sine to simplify the expression. The formula states that sin(A-B)=sin(A)cos(B)-cos(A)sin(B).
sin(π3)cos(π4)-cos(π3)sin(π4)
Step 3
Remove parentheses.
sin(π3)cos(π4)-cos(π3)sin(π4)
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
The exact value of sin(π3) is 32.
32cos(π4)-cos(π3)sin(π4)
Step 4.2
The exact value of cos(π4) is 22.
3222-cos(π3)sin(π4)
Step 4.3
Multiply 3222.
Tap for more steps...
Step 4.3.1
Multiply 32 by 22.
3222-cos(π3)sin(π4)
Step 4.3.2
Combine using the product rule for radicals.
3222-cos(π3)sin(π4)
Step 4.3.3
Multiply 3 by 2.
622-cos(π3)sin(π4)
Step 4.3.4
Multiply 2 by 2.
64-cos(π3)sin(π4)
64-cos(π3)sin(π4)
Step 4.4
The exact value of cos(π3) is 12.
64-12sin(π4)
Step 4.5
The exact value of sin(π4) is 22.
64-1222
Step 4.6
Multiply -1222.
Tap for more steps...
Step 4.6.1
Multiply 22 by 12.
64-222
Step 4.6.2
Multiply 2 by 2.
64-24
64-24
64-24
Step 5
Combine the numerators over the common denominator.
6-24
Step 6
The result can be shown in multiple forms.
Exact Form:
6-24
Decimal Form:
0.25881904
 [x2  12  π  xdx ]