Enter a problem...
Trigonometry Examples
x3-3x2-x-10x2+3x-1
Step 1
Set the denominator in x3-3x2-x-10x2+3x-1 equal to 0 to find where the expression is undefined.
x2+3x-1=0
Step 2
Step 2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 2.2
Substitute the values a=1, b=3, and c=-1 into the quadratic formula and solve for x.
-3±√32-4⋅(1⋅-1)2⋅1
Step 2.3
Simplify.
Step 2.3.1
Simplify the numerator.
Step 2.3.1.1
Raise 3 to the power of 2.
x=-3±√9-4⋅1⋅-12⋅1
Step 2.3.1.2
Multiply -4⋅1⋅-1.
Step 2.3.1.2.1
Multiply -4 by 1.
x=-3±√9-4⋅-12⋅1
Step 2.3.1.2.2
Multiply -4 by -1.
x=-3±√9+42⋅1
x=-3±√9+42⋅1
Step 2.3.1.3
Add 9 and 4.
x=-3±√132⋅1
x=-3±√132⋅1
Step 2.3.2
Multiply 2 by 1.
x=-3±√132
x=-3±√132
Step 2.4
Simplify the expression to solve for the + portion of the ±.
Step 2.4.1
Simplify the numerator.
Step 2.4.1.1
Raise 3 to the power of 2.
x=-3±√9-4⋅1⋅-12⋅1
Step 2.4.1.2
Multiply -4⋅1⋅-1.
Step 2.4.1.2.1
Multiply -4 by 1.
x=-3±√9-4⋅-12⋅1
Step 2.4.1.2.2
Multiply -4 by -1.
x=-3±√9+42⋅1
x=-3±√9+42⋅1
Step 2.4.1.3
Add 9 and 4.
x=-3±√132⋅1
x=-3±√132⋅1
Step 2.4.2
Multiply 2 by 1.
x=-3±√132
Step 2.4.3
Change the ± to +.
x=-3+√132
Step 2.4.4
Rewrite -3 as -1(3).
x=-1⋅3+√132
Step 2.4.5
Factor -1 out of √13.
x=-1⋅3-1(-√13)2
Step 2.4.6
Factor -1 out of -1(3)-1(-√13).
x=-1(3-√13)2
Step 2.4.7
Move the negative in front of the fraction.
x=-3-√132
x=-3-√132
Step 2.5
Simplify the expression to solve for the - portion of the ±.
Step 2.5.1
Simplify the numerator.
Step 2.5.1.1
Raise 3 to the power of 2.
x=-3±√9-4⋅1⋅-12⋅1
Step 2.5.1.2
Multiply -4⋅1⋅-1.
Step 2.5.1.2.1
Multiply -4 by 1.
x=-3±√9-4⋅-12⋅1
Step 2.5.1.2.2
Multiply -4 by -1.
x=-3±√9+42⋅1
x=-3±√9+42⋅1
Step 2.5.1.3
Add 9 and 4.
x=-3±√132⋅1
x=-3±√132⋅1
Step 2.5.2
Multiply 2 by 1.
x=-3±√132
Step 2.5.3
Change the ± to -.
x=-3-√132
Step 2.5.4
Rewrite -3 as -1(3).
x=-1⋅3-√132
Step 2.5.5
Factor -1 out of -√13.
x=-1⋅3-(√13)2
Step 2.5.6
Factor -1 out of -1(3)-(√13).
x=-1(3+√13)2
Step 2.5.7
Move the negative in front of the fraction.
x=-3+√132
x=-3+√132
Step 2.6
The final answer is the combination of both solutions.
x=-3-√132,-3+√132
x=-3-√132,-3+√132
Step 3
The domain is all values of x that make the expression defined.
Interval Notation:
(-∞,-3+√132)∪(-3+√132,-3-√132)∪(-3-√132,∞)
Set-Builder Notation:
{x|x≠-3-√132,-3+√132}
Step 4