Enter a problem...
Trigonometry Examples
y=sec(2x+π4)y=sec(2x+π4)
Step 1
Set the argument in sec(2x+π4)sec(2x+π4) equal to π2+πnπ2+πn to find where the expression is undefined.
2x+π4=π2+πn2x+π4=π2+πn, for any integer nn
Step 2
Step 2.1
Move all terms not containing xx to the right side of the equation.
Step 2.1.1
Subtract π4π4 from both sides of the equation.
2x=π2+πn-π42x=π2+πn−π4
Step 2.1.2
To write π2π2 as a fraction with a common denominator, multiply by 2222.
2x=πn+π2⋅22-π42x=πn+π2⋅22−π4
Step 2.1.3
Write each expression with a common denominator of 44, by multiplying each by an appropriate factor of 11.
Step 2.1.3.1
Multiply π2π2 by 2222.
2x=πn+π⋅22⋅2-π42x=πn+π⋅22⋅2−π4
Step 2.1.3.2
Multiply 22 by 22.
2x=πn+π⋅24-π42x=πn+π⋅24−π4
2x=πn+π⋅24-π42x=πn+π⋅24−π4
Step 2.1.4
Combine the numerators over the common denominator.
2x=πn+π⋅2-π42x=πn+π⋅2−π4
Step 2.1.5
Subtract ππ from π⋅2π⋅2.
Step 2.1.5.1
Reorder ππ and 22.
2x=πn+2⋅π-π42x=πn+2⋅π−π4
Step 2.1.5.2
Subtract ππ from 2⋅π2⋅π.
2x=πn+π42x=πn+π4
2x=πn+π42x=πn+π4
2x=πn+π42x=πn+π4
Step 2.2
Divide each term in 2x=πn+π42x=πn+π4 by 22 and simplify.
Step 2.2.1
Divide each term in 2x=πn+π42x=πn+π4 by 22.
2x2=πn2+π422x2=πn2+π42
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of 22.
Step 2.2.2.1.1
Cancel the common factor.
2x2=πn2+π42
Step 2.2.2.1.2
Divide x by 1.
x=πn2+π42
x=πn2+π42
x=πn2+π42
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Simplify each term.
Step 2.2.3.1.1
Multiply the numerator by the reciprocal of the denominator.
x=πn2+π4⋅12
Step 2.2.3.1.2
Multiply π4⋅12.
Step 2.2.3.1.2.1
Multiply π4 by 12.
x=πn2+π4⋅2
Step 2.2.3.1.2.2
Multiply 4 by 2.
x=πn2+π8
x=πn2+π8
x=πn2+π8
x=πn2+π8
x=πn2+π8
x=πn2+π8
Step 3
The domain is all values of x that make the expression defined.
Set-Builder Notation:
{x|x≠πn2+π8}, for any integer n
Step 4