Enter a problem...
Trigonometry Examples
arcsin(n)(-52⋅π)+a2⋅cos(8π)-(a2+1)cos(0)
Step 1
Step 1.1
Combine π and 52.
arcsin(n)(-π⋅52)+a2⋅cos(8π)-(a2+1)cos(0)
Step 1.2
Move 5 to the left of π.
arcsin(n)(-5⋅π2)+a2⋅cos(8π)-(a2+1)cos(0)
Step 1.3
Combine arcsin(n) and 5π2.
-arcsin(n)(5π)2+a2⋅cos(8π)-(a2+1)cos(0)
Step 1.4
Move 5 to the left of arcsin(n).
-5⋅arcsin(n)π2+a2⋅cos(8π)-(a2+1)cos(0)
Step 1.5
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
-5arcsin(n)π2+a2⋅cos(0)-(a2+1)cos(0)
Step 1.6
The exact value of cos(0) is 1.
-5arcsin(n)π2+a2⋅1-(a2+1)cos(0)
Step 1.7
Multiply a2 by 1.
-5arcsin(n)π2+a2-(a2+1)cos(0)
Step 1.8
Apply the distributive property.
-5arcsin(n)π2+a2+(-a2-1⋅1)cos(0)
Step 1.9
Multiply -1 by 1.
-5arcsin(n)π2+a2+(-a2-1)cos(0)
Step 1.10
The exact value of cos(0) is 1.
-5arcsin(n)π2+a2+(-a2-1)⋅1
Step 1.11
Multiply -a2-1 by 1.
-5arcsin(n)π2+a2-a2-1
-5arcsin(n)π2+a2-a2-1
Step 2
Step 2.1
Combine the opposite terms in -5arcsin(n)π2+a2-a2-1.
Step 2.1.1
Subtract a2 from a2.
-5arcsin(n)π2+0-1
Step 2.1.2
Add -5arcsin(n)π2 and 0.
-5arcsin(n)π2-1
-5arcsin(n)π2-1
Step 2.2
Reorder factors in -5arcsin(n)π2-1.
-5πarcsin(n)2-1
-5πarcsin(n)2-1