Enter a problem...
Trigonometry Examples
cos(π)cos(x)-sin(π)sin(x)
Step 1
Step 1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(0)cos(x)-sin(π)sin(x)
Step 1.2
The exact value of cos(0) is 1.
-1⋅1cos(x)-sin(π)sin(x)
Step 1.3
Multiply -1 by 1.
-1cos(x)-sin(π)sin(x)
Step 1.4
Rewrite -1cos(x) as -cos(x).
-cos(x)-sin(π)sin(x)
Step 1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-cos(x)-sin(0)sin(x)
Step 1.6
The exact value of sin(0) is 0.
-cos(x)-0sin(x)
Step 1.7
Multiply -1 by 0.
-cos(x)+0sin(x)
Step 1.8
Multiply 0 by sin(x).
-cos(x)+0
-cos(x)+0
Step 2
Add -cos(x) and 0.
-cos(x)