Trigonometry Examples

Simplify cos(pi)cos(x)-sin(pi)sin(x)
cos(π)cos(x)-sin(π)sin(x)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(0)cos(x)-sin(π)sin(x)
Step 1.2
The exact value of cos(0) is 1.
-11cos(x)-sin(π)sin(x)
Step 1.3
Multiply -1 by 1.
-1cos(x)-sin(π)sin(x)
Step 1.4
Rewrite -1cos(x) as -cos(x).
-cos(x)-sin(π)sin(x)
Step 1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-cos(x)-sin(0)sin(x)
Step 1.6
The exact value of sin(0) is 0.
-cos(x)-0sin(x)
Step 1.7
Multiply -1 by 0.
-cos(x)+0sin(x)
Step 1.8
Multiply 0 by sin(x).
-cos(x)+0
-cos(x)+0
Step 2
Add -cos(x) and 0.
-cos(x)
 [x2  12  π  xdx ]