Enter a problem...
Trigonometry Examples
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
The exact value of is .
Step 1.1.1.1
Split into two angles where the values of the six trigonometric functions are known.
Step 1.1.1.2
Separate negation.
Step 1.1.1.3
Apply the difference of angles identity .
Step 1.1.1.4
The exact value of is .
Step 1.1.1.5
The exact value of is .
Step 1.1.1.6
The exact value of is .
Step 1.1.1.7
The exact value of is .
Step 1.1.1.8
Simplify .
Step 1.1.1.8.1
Simplify each term.
Step 1.1.1.8.1.1
Multiply .
Step 1.1.1.8.1.1.1
Multiply by .
Step 1.1.1.8.1.1.2
Combine using the product rule for radicals.
Step 1.1.1.8.1.1.3
Multiply by .
Step 1.1.1.8.1.1.4
Multiply by .
Step 1.1.1.8.1.2
Multiply .
Step 1.1.1.8.1.2.1
Multiply by .
Step 1.1.1.8.1.2.2
Multiply by .
Step 1.1.1.8.2
Combine the numerators over the common denominator.
Step 1.1.2
Combine and .
Step 1.1.3
The exact value of is .
Step 1.1.3.1
Split into two angles where the values of the six trigonometric functions are known.
Step 1.1.3.2
Separate negation.
Step 1.1.3.3
Apply the difference of angles identity.
Step 1.1.3.4
The exact value of is .
Step 1.1.3.5
The exact value of is .
Step 1.1.3.6
The exact value of is .
Step 1.1.3.7
The exact value of is .
Step 1.1.3.8
Simplify .
Step 1.1.3.8.1
Simplify each term.
Step 1.1.3.8.1.1
Multiply .
Step 1.1.3.8.1.1.1
Multiply by .
Step 1.1.3.8.1.1.2
Combine using the product rule for radicals.
Step 1.1.3.8.1.1.3
Multiply by .
Step 1.1.3.8.1.1.4
Multiply by .
Step 1.1.3.8.1.2
Multiply .
Step 1.1.3.8.1.2.1
Multiply by .
Step 1.1.3.8.1.2.2
Multiply by .
Step 1.1.3.8.2
Combine the numerators over the common denominator.
Step 1.1.4
Combine and .
Step 1.2
Combine the numerators over the common denominator.
Step 2
Step 2.1
Apply the distributive property.
Step 2.2
Apply the distributive property.
Step 2.3
Multiply .
Step 2.3.1
Multiply by .
Step 2.3.2
Multiply by .
Step 2.4
Apply the distributive property.
Step 3
The result can be shown in multiple forms.
Exact Form:
Decimal Form: