Trigonometry Examples

Simplify ( square root of 2)^4(cos(4*120)+isin(4*120))
(2)4(cos(4120)+isin(4120))
Step 1
Simplify by cancelling exponent with radical.
Tap for more steps...
Step 1.1
Rewrite 24 as 22.
Tap for more steps...
Step 1.1.1
Use axn=axn to rewrite 2 as 212.
(212)4(cos(4120)+isin(4120))
Step 1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
2124(cos(4120)+isin(4120))
Step 1.1.3
Combine 12 and 4.
242(cos(4120)+isin(4120))
Step 1.1.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 1.1.4.1
Factor 2 out of 4.
2222(cos(4120)+isin(4120))
Step 1.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.1.4.2.1
Factor 2 out of 2.
2222(1)(cos(4120)+isin(4120))
Step 1.1.4.2.2
Cancel the common factor.
22221(cos(4120)+isin(4120))
Step 1.1.4.2.3
Rewrite the expression.
221(cos(4120)+isin(4120))
Step 1.1.4.2.4
Divide 2 by 1.
22(cos(4120)+isin(4120))
22(cos(4120)+isin(4120))
22(cos(4120)+isin(4120))
22(cos(4120)+isin(4120))
Step 1.2
Raise 2 to the power of 2.
4(cos(4120)+isin(4120))
4(cos(4120)+isin(4120))
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Multiply 4 by 120.
4(cos(480)+isin(4120))
Step 2.2
Remove full rotations of 360° until the angle is between 0° and 360°.
4(cos(120)+isin(4120))
Step 2.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
4(-cos(60)+isin(4120))
Step 2.4
The exact value of cos(60) is 12.
4(-12+isin(4120))
Step 2.5
Multiply 4 by 120.
4(-12+isin(480))
Step 2.6
Remove full rotations of 360° until the angle is between 0° and 360°.
4(-12+isin(120))
Step 2.7
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
4(-12+isin(60))
Step 2.8
The exact value of sin(60) is 32.
4(-12+i32)
Step 2.9
Combine i and 32.
4(-12+i32)
4(-12+i32)
Step 3
Simplify terms.
Tap for more steps...
Step 3.1
Apply the distributive property.
4(-12)+4i32
Step 3.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.1
Move the leading negative in -12 into the numerator.
4(-12)+4i32
Step 3.2.2
Factor 2 out of 4.
2(2)-12+4i32
Step 3.2.3
Cancel the common factor.
22-12+4i32
Step 3.2.4
Rewrite the expression.
2-1+4i32
2-1+4i32
Step 3.3
Multiply 2 by -1.
-2+4i32
Step 3.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.4.1
Factor 2 out of 4.
-2+2(2)i32
Step 3.4.2
Cancel the common factor.
-2+22i32
Step 3.4.3
Rewrite the expression.
-2+2(i3)
-2+2i3
-2+2i3
 [x2  12  π  xdx ]