Trigonometry Examples

Solve for x sin((7pi)/6)+sin(2((7pi)/6))=(sin(x)+sin(2x)((7pi)/6))
sin(7π6)+sin(2(7π6))=(sin(x)+sin(2x)(7π6))sin(7π6)+sin(2(7π6))=(sin(x)+sin(2x)(7π6))
Step 1
Simplify sin(7π6)+sin(2(7π6))sin(7π6)+sin(2(7π6)).
Tap for more steps...
Step 1.1
Remove parentheses.
sin(7π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)sin(7π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)
Step 1.2
Simplify each term.
Tap for more steps...
Step 1.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
-sin(π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)sin(π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)
Step 1.2.2
The exact value of sin(π6)sin(π6) is 1212.
-12+sin(2(7π6))=sin(x)+sin(2x)(7π6)12+sin(2(7π6))=sin(x)+sin(2x)(7π6)
Step 1.2.3
Cancel the common factor of 22.
Tap for more steps...
Step 1.2.3.1
Factor 22 out of 66.
-12+sin(27π2(3))=sin(x)+sin(2x)(7π6)12+sin(27π2(3))=sin(x)+sin(2x)(7π6)
Step 1.2.3.2
Cancel the common factor.
-12+sin(27π23)=sin(x)+sin(2x)(7π6)12+sin(27π23)=sin(x)+sin(2x)(7π6)
Step 1.2.3.3
Rewrite the expression.
-12+sin(7π3)=sin(x)+sin(2x)(7π6)12+sin(7π3)=sin(x)+sin(2x)(7π6)
-12+sin(7π3)=sin(x)+sin(2x)(7π6)12+sin(7π3)=sin(x)+sin(2x)(7π6)
Step 1.2.4
Subtract full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
-12+sin(π3)=sin(x)+sin(2x)(7π6)12+sin(π3)=sin(x)+sin(2x)(7π6)
Step 1.2.5
The exact value of sin(π3)sin(π3) is 3232.
-12+32=sin(x)+sin(2x)(7π6)12+32=sin(x)+sin(2x)(7π6)
-12+32=sin(x)+sin(2x)(7π6)12+32=sin(x)+sin(2x)(7π6)
-12+32=sin(x)+sin(2x)(7π6)12+32=sin(x)+sin(2x)(7π6)
Step 2
Simplify sin(x)+sin(2x)(7π6)sin(x)+sin(2x)(7π6).
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Combine sin(2x)sin(2x) and 7π67π6.
-12+32=sin(x)+sin(2x)(7π)612+32=sin(x)+sin(2x)(7π)6
Step 2.1.2
Move 77 to the left of sin(2x)sin(2x).
-12+32=sin(x)+7sin(2x)π612+32=sin(x)+7sin(2x)π6
-12+32=sin(x)+7sin(2x)π612+32=sin(x)+7sin(2x)π6
Step 2.2
Reorder factors in sin(x)+7sin(2x)π6sin(x)+7sin(2x)π6.
-12+32=sin(x)+7πsin(2x)612+32=sin(x)+7πsin(2x)6
-12+32=sin(x)+7πsin(2x)612+32=sin(x)+7πsin(2x)6
Step 3
Graph each side of the equation. The solution is the x-value of the point of intersection.
x0.04399022+2πn,1.6572027+2πn,3.1995582+2πn,4.52402682+2πnx0.04399022+2πn,1.6572027+2πn,3.1995582+2πn,4.52402682+2πn, for any integer nn
Step 4
 [x2  12  π  xdx ]  x2  12  π  xdx