Enter a problem...
Trigonometry Examples
sin(7π6)+sin(2(7π6))=(sin(x)+sin(2x)(7π6))sin(7π6)+sin(2(7π6))=(sin(x)+sin(2x)(7π6))
Step 1
Step 1.1
Remove parentheses.
sin(7π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)sin(7π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)
Step 1.2
Simplify each term.
Step 1.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
-sin(π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)−sin(π6)+sin(2(7π6))=sin(x)+sin(2x)(7π6)
Step 1.2.2
The exact value of sin(π6)sin(π6) is 1212.
-12+sin(2(7π6))=sin(x)+sin(2x)(7π6)−12+sin(2(7π6))=sin(x)+sin(2x)(7π6)
Step 1.2.3
Cancel the common factor of 22.
Step 1.2.3.1
Factor 22 out of 66.
-12+sin(27π2(3))=sin(x)+sin(2x)(7π6)−12+sin(27π2(3))=sin(x)+sin(2x)(7π6)
Step 1.2.3.2
Cancel the common factor.
-12+sin(27π2⋅3)=sin(x)+sin(2x)(7π6)−12+sin(27π2⋅3)=sin(x)+sin(2x)(7π6)
Step 1.2.3.3
Rewrite the expression.
-12+sin(7π3)=sin(x)+sin(2x)(7π6)−12+sin(7π3)=sin(x)+sin(2x)(7π6)
-12+sin(7π3)=sin(x)+sin(2x)(7π6)−12+sin(7π3)=sin(x)+sin(2x)(7π6)
Step 1.2.4
Subtract full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
-12+sin(π3)=sin(x)+sin(2x)(7π6)−12+sin(π3)=sin(x)+sin(2x)(7π6)
Step 1.2.5
The exact value of sin(π3)sin(π3) is √32√32.
-12+√32=sin(x)+sin(2x)(7π6)−12+√32=sin(x)+sin(2x)(7π6)
-12+√32=sin(x)+sin(2x)(7π6)−12+√32=sin(x)+sin(2x)(7π6)
-12+√32=sin(x)+sin(2x)(7π6)−12+√32=sin(x)+sin(2x)(7π6)
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Combine sin(2x)sin(2x) and 7π67π6.
-12+√32=sin(x)+sin(2x)(7π)6−12+√32=sin(x)+sin(2x)(7π)6
Step 2.1.2
Move 77 to the left of sin(2x)sin(2x).
-12+√32=sin(x)+7sin(2x)π6−12+√32=sin(x)+7sin(2x)π6
-12+√32=sin(x)+7sin(2x)π6−12+√32=sin(x)+7sin(2x)π6
Step 2.2
Reorder factors in sin(x)+7sin(2x)π6sin(x)+7sin(2x)π6.
-12+√32=sin(x)+7πsin(2x)6−12+√32=sin(x)+7πsin(2x)6
-12+√32=sin(x)+7πsin(2x)6−12+√32=sin(x)+7πsin(2x)6
Step 3
Graph each side of the equation. The solution is the x-value of the point of intersection.
x≈0.04399022+2πn,1.6572027+2πn,3.1995582+2πn,4.52402682+2πnx≈0.04399022+2πn,1.6572027+2πn,3.1995582+2πn,4.52402682+2πn, for any integer nn
Step 4