Enter a problem...
Trigonometry Examples
arcsin(√1-2y+1)=xarcsin(√1−2y+1)=x
Step 1
Take the inverse arcsine of both sides of the equation to extract yy from inside the arcsine.
√1-2y+1=sin(x)√1−2y+1=sin(x)
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
√1-2y+12=sin2(x)√1−2y+12=sin2(x)
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √1-2y+1√1−2y+1 as (1-2y+1)12(1−2y+1)12.
((1-2y+1)12)2=sin2(x)((1−2y+1)12)2=sin2(x)
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify ((1-2y+1)12)2((1−2y+1)12)2.
Step 3.2.1.1
Multiply the exponents in ((1-2y+1)12)2((1−2y+1)12)2.
Step 3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(1-2y+1)12⋅2=sin2(x)(1−2y+1)12⋅2=sin2(x)
Step 3.2.1.1.2
Cancel the common factor of 22.
Step 3.2.1.1.2.1
Cancel the common factor.
(1-2y+1)12⋅2=sin2(x)
Step 3.2.1.1.2.2
Rewrite the expression.
(1-2y+1)1=sin2(x)
(1-2y+1)1=sin2(x)
(1-2y+1)1=sin2(x)
Step 3.2.1.2
Simplify.
1-2y+1=sin2(x)
1-2y+1=sin2(x)
1-2y+1=sin2(x)
1-2y+1=sin2(x)
Step 4
Step 4.1
Move all terms not containing y to the right side of the equation.
Step 4.1.1
Subtract 1 from both sides of the equation.
-2y+1=sin2(x)-1
Step 4.1.2
Reorder sin2(x) and -1.
-2y+1=-1+sin2(x)
Step 4.1.3
Rewrite -1 as -1(1).
-2y+1=-1(1)+sin2(x)
Step 4.1.4
Factor -1 out of sin2(x).
-2y+1=-1(1)-1(-sin2(x))
Step 4.1.5
Factor -1 out of -1(1)-1(-sin2(x)).
-2y+1=-1(1-sin2(x))
Step 4.1.6
Rewrite -1(1-sin2(x)) as -(1-sin2(x)).
-2y+1=-(1-sin2(x))
Step 4.1.7
Apply pythagorean identity.
-2y+1=-cos2(x)
-2y+1=-cos2(x)
Step 4.2
Find the LCD of the terms in the equation.
Step 4.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
y+1,1
Step 4.2.2
Remove parentheses.
y+1,1
Step 4.2.3
The LCM of one and any expression is the expression.
y+1
y+1
Step 4.3
Multiply each term in -2y+1=-cos2(x) by y+1 to eliminate the fractions.
Step 4.3.1
Multiply each term in -2y+1=-cos2(x) by y+1.
-2y+1(y+1)=-cos2(x)(y+1)
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of y+1.
Step 4.3.2.1.1
Move the leading negative in -2y+1 into the numerator.
-2y+1(y+1)=-cos2(x)(y+1)
Step 4.3.2.1.2
Cancel the common factor.
-2y+1(y+1)=-cos2(x)(y+1)
Step 4.3.2.1.3
Rewrite the expression.
-2=-cos2(x)(y+1)
-2=-cos2(x)(y+1)
-2=-cos2(x)(y+1)
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Apply the distributive property.
-2=-cos2(x)y-cos2(x)⋅1
Step 4.3.3.2
Simplify the expression.
Step 4.3.3.2.1
Multiply -1 by 1.
-2=-cos2(x)y-cos2(x)
Step 4.3.3.2.2
Reorder factors in -cos2(x)y-cos2(x).
-2=-ycos2(x)-cos2(x)
-2=-ycos2(x)-cos2(x)
-2=-ycos2(x)-cos2(x)
-2=-ycos2(x)-cos2(x)
Step 4.4
Solve the equation.
Step 4.4.1
Rewrite the equation as -ycos2(x)-cos2(x)=-2.
-ycos2(x)-cos2(x)=-2
Step 4.4.2
Add cos2(x) to both sides of the equation.
-ycos2(x)=-2+cos2(x)
Step 4.4.3
Divide each term in -ycos2(x)=-2+cos2(x) by -cos2(x) and simplify.
Step 4.4.3.1
Divide each term in -ycos2(x)=-2+cos2(x) by -cos2(x).
-ycos2(x)-cos2(x)=-2-cos2(x)+cos2(x)-cos2(x)
Step 4.4.3.2
Simplify the left side.
Step 4.4.3.2.1
Dividing two negative values results in a positive value.
ycos2(x)cos2(x)=-2-cos2(x)+cos2(x)-cos2(x)
Step 4.4.3.2.2
Cancel the common factor of cos2(x).
Step 4.4.3.2.2.1
Cancel the common factor.
ycos2(x)cos2(x)=-2-cos2(x)+cos2(x)-cos2(x)
Step 4.4.3.2.2.2
Divide y by 1.
y=-2-cos2(x)+cos2(x)-cos2(x)
y=-2-cos2(x)+cos2(x)-cos2(x)
y=-2-cos2(x)+cos2(x)-cos2(x)
Step 4.4.3.3
Simplify the right side.
Step 4.4.3.3.1
Simplify each term.
Step 4.4.3.3.1.1
Multiply by 1.
y=-2-(cos2(x)⋅1)+cos2(x)-cos2(x)
Step 4.4.3.3.1.2
Separate fractions.
y=-2-1⋅(1)⋅1cos2(x)+cos2(x)-cos2(x)
Step 4.4.3.3.1.3
Convert from 1cos2(x) to sec2(x).
y=-2-1⋅(1)sec2(x)+cos2(x)-cos2(x)
Step 4.4.3.3.1.4
Multiply -1 by 1.
y=-2-1sec2(x)+cos2(x)-cos2(x)
Step 4.4.3.3.1.5
Divide -2 by -1.
y=2sec2(x)+cos2(x)-cos2(x)
Step 4.4.3.3.1.6
Cancel the common factor of cos2(x).
Step 4.4.3.3.1.6.1
Cancel the common factor.
y=2sec2(x)+cos2(x)-cos2(x)
Step 4.4.3.3.1.6.2
Rewrite the expression.
y=2sec2(x)+1-1
Step 4.4.3.3.1.6.3
Move the negative one from the denominator of 1-1.
y=2sec2(x)-1⋅1
y=2sec2(x)-1⋅1
Step 4.4.3.3.1.7
Multiply -1 by 1.
y=2sec2(x)-1
y=2sec2(x)-1
y=2sec2(x)-1
y=2sec2(x)-1
y=2sec2(x)-1
y=2sec2(x)-1