Trigonometry Examples

Simplify cos(-x)cos(x)-sin(-x)sin(x)
cos(-x)cos(x)-sin(-x)sin(x)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Since cos(-x) is an even function, rewrite cos(-x) as cos(x).
cos(x)cos(x)-sin(-x)sin(x)
Step 1.2
Multiply cos(x)cos(x).
Tap for more steps...
Step 1.2.1
Raise cos(x) to the power of 1.
cos1(x)cos(x)-sin(-x)sin(x)
Step 1.2.2
Raise cos(x) to the power of 1.
cos1(x)cos1(x)-sin(-x)sin(x)
Step 1.2.3
Use the power rule aman=am+n to combine exponents.
cos(x)1+1-sin(-x)sin(x)
Step 1.2.4
Add 1 and 1.
cos2(x)-sin(-x)sin(x)
cos2(x)-sin(-x)sin(x)
Step 1.3
Since sin(-x) is an odd function, rewrite sin(-x) as -sin(x).
cos2(x)--sin(x)sin(x)
Step 1.4
Multiply --sin(x).
Tap for more steps...
Step 1.4.1
Multiply -1 by -1.
cos2(x)+1sin(x)sin(x)
Step 1.4.2
Multiply sin(x) by 1.
cos2(x)+sin(x)sin(x)
cos2(x)+sin(x)sin(x)
Step 1.5
Multiply sin(x)sin(x).
Tap for more steps...
Step 1.5.1
Raise sin(x) to the power of 1.
cos2(x)+sin1(x)sin(x)
Step 1.5.2
Raise sin(x) to the power of 1.
cos2(x)+sin1(x)sin1(x)
Step 1.5.3
Use the power rule aman=am+n to combine exponents.
cos2(x)+sin(x)1+1
Step 1.5.4
Add 1 and 1.
cos2(x)+sin2(x)
cos2(x)+sin2(x)
cos2(x)+sin2(x)
Step 2
Rearrange terms.
sin2(x)+cos2(x)
Step 3
Apply pythagorean identity.
1
 [x2  12  π  xdx ]