Trigonometry Examples

Solve for x arcsin(x)=arccos(12/13)
arcsin(x)=arccos(1213)arcsin(x)=arccos(1213)
Step 1
Take the inverse arcsine of both sides of the equation to extract xx from inside the arcsine.
x=sin(arccos(1213))x=sin(arccos(1213))
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
Simplify sin(arccos(1213))sin(arccos(1213)).
Tap for more steps...
Step 2.1.1
Draw a triangle in the plane with vertices (1213,12-(1213)2)1213,12(1213)2, (1213,0)(1213,0), and the origin. Then arccos(1213)arccos(1213) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1213,12-(1213)2)1213,12(1213)2. Therefore, sin(arccos(1213))sin(arccos(1213)) is 2516925169.
x=25169x=25169
Step 2.1.2
Rewrite 2516925169 as 2516925169.
x=25169x=25169
Step 2.1.3
Simplify the numerator.
Tap for more steps...
Step 2.1.3.1
Rewrite 2525 as 5252.
x=52169x=52169
Step 2.1.3.2
Pull terms out from under the radical, assuming positive real numbers.
x=5169x=5169
x=5169x=5169
Step 2.1.4
Simplify the denominator.
Tap for more steps...
Step 2.1.4.1
Rewrite 169169 as 132132.
x=5132x=5132
Step 2.1.4.2
Pull terms out from under the radical, assuming positive real numbers.
x=513x=513
x=513x=513
x=513x=513
x=513x=513
Step 3
The result can be shown in multiple forms.
Exact Form:
x=513x=513
Decimal Form:
x=0.384615x=0.¯¯¯¯¯¯¯¯¯¯¯¯384615
 [x2  12  π  xdx ]  x2  12  π  xdx