Enter a problem...
Trigonometry Examples
arcsin(x)=arccos(1213)arcsin(x)=arccos(1213)
Step 1
Take the inverse arcsine of both sides of the equation to extract xx from inside the arcsine.
x=sin(arccos(1213))x=sin(arccos(1213))
Step 2
Step 2.1
Simplify sin(arccos(1213))sin(arccos(1213)).
Step 2.1.1
Draw a triangle in the plane with vertices (1213,√12-(1213)2)⎛⎝1213,√12−(1213)2⎞⎠, (1213,0)(1213,0), and the origin. Then arccos(1213)arccos(1213) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1213,√12-(1213)2)⎛⎝1213,√12−(1213)2⎞⎠. Therefore, sin(arccos(1213))sin(arccos(1213)) is √25169√25169.
x=√25169x=√25169
Step 2.1.2
Rewrite √25169√25169 as √25√169√25√169.
x=√25√169x=√25√169
Step 2.1.3
Simplify the numerator.
Step 2.1.3.1
Rewrite 2525 as 5252.
x=√52√169x=√52√169
Step 2.1.3.2
Pull terms out from under the radical, assuming positive real numbers.
x=5√169x=5√169
x=5√169x=5√169
Step 2.1.4
Simplify the denominator.
Step 2.1.4.1
Rewrite 169169 as 132132.
x=5√132x=5√132
Step 2.1.4.2
Pull terms out from under the radical, assuming positive real numbers.
x=513x=513
x=513x=513
x=513x=513
x=513x=513
Step 3
The result can be shown in multiple forms.
Exact Form:
x=513x=513
Decimal Form:
x=0.‾384615x=0.¯¯¯¯¯¯¯¯¯¯¯¯384615