Enter a problem...
Trigonometry Examples
arccot(x)-arccos(12)=π3arccot(x)−arccos(12)=π3
Step 1
Step 1.1
The exact value of arccos(12)arccos(12) is π3π3.
arccot(x)-π3=π3arccot(x)−π3=π3
arccot(x)-π3=π3arccot(x)−π3=π3
Step 2
Step 2.1
Add π3π3 to both sides of the equation.
arccot(x)=π3+π3arccot(x)=π3+π3
Step 2.2
Combine the numerators over the common denominator.
arccot(x)=π+π3arccot(x)=π+π3
Step 2.3
Add ππ and ππ.
arccot(x)=2π3arccot(x)=2π3
arccot(x)=2π3arccot(x)=2π3
Step 3
Take the inverse arccotangent of both sides of the equation to extract xx from inside the arccotangent.
x=cot(2π3)x=cot(2π3)
Step 4
Step 4.1
Simplify cot(2π3)cot(2π3).
Step 4.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cotangent is negative in the second quadrant.
x=-cot(π3)x=−cot(π3)
Step 4.1.2
The exact value of cot(π3)cot(π3) is 1√31√3.
x=-1√3x=−1√3
Step 4.1.3
Multiply 1√31√3 by √3√3√3√3.
x=-(1√3⋅√3√3)x=−(1√3⋅√3√3)
Step 4.1.4
Combine and simplify the denominator.
Step 4.1.4.1
Multiply 1√31√3 by √3√3√3√3.
x=-√3√3√3x=−√3√3√3
Step 4.1.4.2
Raise √3√3 to the power of 11.
x=-√3√31√3x=−√3√31√3
Step 4.1.4.3
Raise √3√3 to the power of 11.
x=-√3√31√31x=−√3√31√31
Step 4.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
x=-√3√31+1x=−√3√31+1
Step 4.1.4.5
Add 11 and 11.
x=-√3√32x=−√3√32
Step 4.1.4.6
Rewrite √32√32 as 33.
Step 4.1.4.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
x=-√3(312)2x=−√3(312)2
Step 4.1.4.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x=-√3312⋅2x=−√3312⋅2
Step 4.1.4.6.3
Combine 1212 and 22.
x=-√3322x=−√3322
Step 4.1.4.6.4
Cancel the common factor of 22.
Step 4.1.4.6.4.1
Cancel the common factor.
x=-√3322
Step 4.1.4.6.4.2
Rewrite the expression.
x=-√331
x=-√331
Step 4.1.4.6.5
Evaluate the exponent.
x=-√33
x=-√33
x=-√33
x=-√33
x=-√33
Step 5
The result can be shown in multiple forms.
Exact Form:
x=-√33
Decimal Form:
x=-0.57735026…