Trigonometry Examples

Solve for x arccot(x)-arccos(1/2)=pi/3
arccot(x)-arccos(12)=π3arccot(x)arccos(12)=π3
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
The exact value of arccos(12)arccos(12) is π3π3.
arccot(x)-π3=π3arccot(x)π3=π3
arccot(x)-π3=π3arccot(x)π3=π3
Step 2
Move all terms not containing xx to the right side of the equation.
Tap for more steps...
Step 2.1
Add π3π3 to both sides of the equation.
arccot(x)=π3+π3arccot(x)=π3+π3
Step 2.2
Combine the numerators over the common denominator.
arccot(x)=π+π3arccot(x)=π+π3
Step 2.3
Add ππ and ππ.
arccot(x)=2π3arccot(x)=2π3
arccot(x)=2π3arccot(x)=2π3
Step 3
Take the inverse arccotangent of both sides of the equation to extract xx from inside the arccotangent.
x=cot(2π3)x=cot(2π3)
Step 4
Simplify the right side.
Tap for more steps...
Step 4.1
Simplify cot(2π3)cot(2π3).
Tap for more steps...
Step 4.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cotangent is negative in the second quadrant.
x=-cot(π3)x=cot(π3)
Step 4.1.2
The exact value of cot(π3)cot(π3) is 1313.
x=-13x=13
Step 4.1.3
Multiply 1313 by 3333.
x=-(1333)x=(1333)
Step 4.1.4
Combine and simplify the denominator.
Tap for more steps...
Step 4.1.4.1
Multiply 1313 by 3333.
x=-333x=333
Step 4.1.4.2
Raise 33 to the power of 11.
x=-3313x=3313
Step 4.1.4.3
Raise 33 to the power of 11.
x=-33131x=33131
Step 4.1.4.4
Use the power rule aman=am+naman=am+n to combine exponents.
x=-331+1x=331+1
Step 4.1.4.5
Add 11 and 11.
x=-332x=332
Step 4.1.4.6
Rewrite 3232 as 33.
Tap for more steps...
Step 4.1.4.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
x=-3(312)2x=3(312)2
Step 4.1.4.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x=-33122x=33122
Step 4.1.4.6.3
Combine 1212 and 22.
x=-3322x=3322
Step 4.1.4.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.1.4.6.4.1
Cancel the common factor.
x=-3322
Step 4.1.4.6.4.2
Rewrite the expression.
x=-331
x=-331
Step 4.1.4.6.5
Evaluate the exponent.
x=-33
x=-33
x=-33
x=-33
x=-33
Step 5
The result can be shown in multiple forms.
Exact Form:
x=-33
Decimal Form:
x=-0.57735026
 [x2  12  π  xdx ]