Trigonometry Examples

Solve for ? 1-(sin(x)^2)/(1-cos(x))=-cos(x)
Step 1
Replace the with based on the identity.
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Apply the distributive property.
Step 2.2
Multiply by .
Step 2.3
Multiply .
Tap for more steps...
Step 2.3.1
Multiply by .
Step 2.3.2
Multiply by .
Step 3
Simplify by subtracting numbers.
Tap for more steps...
Step 3.1
Subtract from .
Step 3.2
Add and .
Step 4
Substitute for .
Step 5
Add to both sides of the equation.
Step 6
Factor out of .
Tap for more steps...
Step 6.1
Factor out of .
Step 6.2
Raise to the power of .
Step 6.3
Factor out of .
Step 6.4
Factor out of .
Step 7
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 8
Set equal to .
Step 9
Set equal to and solve for .
Tap for more steps...
Step 9.1
Set equal to .
Step 9.2
Subtract from both sides of the equation.
Step 10
The final solution is all the values that make true.
Step 11
Substitute for .
Step 12
Set up each of the solutions to solve for .
Step 13
Solve for in .
Tap for more steps...
Step 13.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 13.2
Simplify the right side.
Tap for more steps...
Step 13.2.1
The exact value of is .
Step 13.3
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 13.4
Simplify .
Tap for more steps...
Step 13.4.1
To write as a fraction with a common denominator, multiply by .
Step 13.4.2
Combine fractions.
Tap for more steps...
Step 13.4.2.1
Combine and .
Step 13.4.2.2
Combine the numerators over the common denominator.
Step 13.4.3
Simplify the numerator.
Tap for more steps...
Step 13.4.3.1
Multiply by .
Step 13.4.3.2
Subtract from .
Step 13.5
Find the period of .
Tap for more steps...
Step 13.5.1
The period of the function can be calculated using .
Step 13.5.2
Replace with in the formula for period.
Step 13.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 13.5.4
Divide by .
Step 13.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 14
Solve for in .
Tap for more steps...
Step 14.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 14.2
Simplify the right side.
Tap for more steps...
Step 14.2.1
The exact value of is .
Step 14.3
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Step 14.4
Subtract from .
Step 14.5
Find the period of .
Tap for more steps...
Step 14.5.1
The period of the function can be calculated using .
Step 14.5.2
Replace with in the formula for period.
Step 14.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 14.5.4
Divide by .
Step 14.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 15
List all of the solutions.
, for any integer
Step 16
Consolidate and to .
, for any integer