Enter a problem...
Trigonometry Examples
Step 1
Subtract from both sides of the equation.
Step 2
Replace the with based on the identity.
Step 3
Step 3.1
Apply the distributive property.
Step 3.2
Multiply by .
Step 3.3
Multiply by .
Step 4
Subtract from .
Step 5
Substitute for .
Step 6
Step 6.1
Factor out of .
Step 6.1.1
Factor out of .
Step 6.1.2
Factor out of .
Step 6.1.3
Rewrite as .
Step 6.1.4
Factor out of .
Step 6.1.5
Factor out of .
Step 6.2
Factor.
Step 6.2.1
Factor by grouping.
Step 6.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 6.2.1.1.1
Factor out of .
Step 6.2.1.1.2
Rewrite as plus
Step 6.2.1.1.3
Apply the distributive property.
Step 6.2.1.1.4
Multiply by .
Step 6.2.1.2
Factor out the greatest common factor from each group.
Step 6.2.1.2.1
Group the first two terms and the last two terms.
Step 6.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 6.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 6.2.2
Remove unnecessary parentheses.
Step 7
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 8
Step 8.1
Set equal to .
Step 8.2
Solve for .
Step 8.2.1
Subtract from both sides of the equation.
Step 8.2.2
Divide each term in by and simplify.
Step 8.2.2.1
Divide each term in by .
Step 8.2.2.2
Simplify the left side.
Step 8.2.2.2.1
Cancel the common factor of .
Step 8.2.2.2.1.1
Cancel the common factor.
Step 8.2.2.2.1.2
Divide by .
Step 8.2.2.3
Simplify the right side.
Step 8.2.2.3.1
Move the negative in front of the fraction.
Step 9
Step 9.1
Set equal to .
Step 9.2
Subtract from both sides of the equation.
Step 10
The final solution is all the values that make true.
Step 11
Substitute for .
Step 12
Set up each of the solutions to solve for .
Step 13
Step 13.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 13.2
Simplify the right side.
Step 13.2.1
The exact value of is .
Step 13.3
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Step 13.4
Simplify .
Step 13.4.1
To write as a fraction with a common denominator, multiply by .
Step 13.4.2
Combine fractions.
Step 13.4.2.1
Combine and .
Step 13.4.2.2
Combine the numerators over the common denominator.
Step 13.4.3
Simplify the numerator.
Step 13.4.3.1
Multiply by .
Step 13.4.3.2
Subtract from .
Step 13.5
Find the period of .
Step 13.5.1
The period of the function can be calculated using .
Step 13.5.2
Replace with in the formula for period.
Step 13.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 13.5.4
Divide by .
Step 13.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 14
Step 14.1
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 14.2
Simplify the right side.
Step 14.2.1
The exact value of is .
Step 14.3
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Step 14.4
Subtract from .
Step 14.5
Find the period of .
Step 14.5.1
The period of the function can be calculated using .
Step 14.5.2
Replace with in the formula for period.
Step 14.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 14.5.4
Divide by .
Step 14.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 15
List all of the solutions.
, for any integer