Enter a problem...
Trigonometry Examples
Step 1
Multiply both sides by .
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify .
Step 2.1.1.1
Apply the distributive property.
Step 2.1.1.2
Reorder.
Step 2.1.1.2.1
Move to the left of .
Step 2.1.1.2.2
Rewrite using the commutative property of multiplication.
Step 2.2
Simplify the right side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Rewrite the expression.
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify each term.
Step 3.1.1.1
Rewrite in terms of sines and cosines.
Step 3.1.1.2
Combine and .
Step 3.1.1.3
Rewrite in terms of sines and cosines.
Step 3.1.1.4
Rewrite in terms of sines and cosines.
Step 3.1.1.5
Apply the product rule to .
Step 3.1.1.6
One to any power is one.
Step 3.1.1.7
Multiply by .
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Rewrite in terms of sines and cosines.
Step 3.2.1.2
Apply the product rule to .
Step 3.2.1.3
One to any power is one.
Step 3.3
Multiply both sides of the equation by .
Step 3.4
Apply the distributive property.
Step 3.5
Cancel the common factor of .
Step 3.5.1
Cancel the common factor.
Step 3.5.2
Rewrite the expression.
Step 3.6
Rewrite using the commutative property of multiplication.
Step 3.7
Cancel the common factor of .
Step 3.7.1
Factor out of .
Step 3.7.2
Factor out of .
Step 3.7.3
Cancel the common factor.
Step 3.7.4
Rewrite the expression.
Step 3.8
Combine and .
Step 3.9
Multiply both sides by .
Step 3.10
Simplify.
Step 3.10.1
Simplify the left side.
Step 3.10.1.1
Cancel the common factor of .
Step 3.10.1.1.1
Move the leading negative in into the numerator.
Step 3.10.1.1.2
Cancel the common factor.
Step 3.10.1.1.3
Rewrite the expression.
Step 3.10.2
Simplify the right side.
Step 3.10.2.1
Simplify .
Step 3.10.2.1.1
Simplify each term.
Step 3.10.2.1.1.1
Rewrite in terms of sines and cosines.
Step 3.10.2.1.1.2
Apply the product rule to .
Step 3.10.2.1.1.3
One to any power is one.
Step 3.10.2.1.1.4
Combine and .
Step 3.10.2.1.2
Simplify terms.
Step 3.10.2.1.2.1
Apply the distributive property.
Step 3.10.2.1.2.2
Cancel the common factor of .
Step 3.10.2.1.2.2.1
Cancel the common factor.
Step 3.10.2.1.2.2.2
Rewrite the expression.
Step 3.11
Solve for .
Step 3.11.1
Rewrite the equation as .
Step 3.11.2
Use the double-angle identity to transform to .
Step 3.11.3
Subtract from both sides of the equation.
Step 3.11.4
Simplify the left side.
Step 3.11.4.1
Simplify .
Step 3.11.4.1.1
Simplify with factoring out.
Step 3.11.4.1.1.1
Factor out of .
Step 3.11.4.1.1.2
Factor out of .
Step 3.11.4.1.1.3
Factor out of .
Step 3.11.4.1.2
Apply pythagorean identity.
Step 3.11.4.1.3
Multiply by .
Step 3.11.5
Simplify the right side.
Step 3.11.5.1
Subtract from .
Step 3.11.6
Since , the equation will always be true for any value of .
All real numbers
All real numbers
All real numbers
Step 4
The result can be shown in multiple forms.
All real numbers
Interval Notation: