Trigonometry Examples

Simplify (tan(t)^2)/(sec(t)^2)+(cot(t)^2)/(csc(t)^2)
tan2(t)sec2(t)+cot2(t)csc2(t)tan2(t)sec2(t)+cot2(t)csc2(t)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite tan2(t)sec2(t)tan2(t)sec2(t) as (tan(t)sec(t))2(tan(t)sec(t))2.
(tan(t)sec(t))2+cot2(t)csc2(t)(tan(t)sec(t))2+cot2(t)csc2(t)
Step 1.2
Rewrite sec(t)sec(t) in terms of sines and cosines.
(tan(t)1cos(t))2+cot2(t)csc2(t)tan(t)1cos(t)2+cot2(t)csc2(t)
Step 1.3
Rewrite tan(t)tan(t) in terms of sines and cosines.
(sin(t)cos(t)1cos(t))2+cot2(t)csc2(t)sin(t)cos(t)1cos(t)2+cot2(t)csc2(t)
Step 1.4
Multiply by the reciprocal of the fraction to divide by 1cos(t)1cos(t).
(sin(t)cos(t)cos(t))2+cot2(t)csc2(t)(sin(t)cos(t)cos(t))2+cot2(t)csc2(t)
Step 1.5
Write cos(t)cos(t) as a fraction with denominator 11.
(sin(t)cos(t)cos(t)1)2+cot2(t)csc2(t)(sin(t)cos(t)cos(t)1)2+cot2(t)csc2(t)
Step 1.6
Cancel the common factor of cos(t)cos(t).
Tap for more steps...
Step 1.6.1
Cancel the common factor.
(sin(t)cos(t)cos(t)1)2+cot2(t)csc2(t)
Step 1.6.2
Rewrite the expression.
sin2(t)+cot2(t)csc2(t)
sin2(t)+cot2(t)csc2(t)
Step 1.7
Rewrite cot2(t)csc2(t) as (cot(t)csc(t))2.
sin2(t)+(cot(t)csc(t))2
Step 1.8
Rewrite csc(t) in terms of sines and cosines.
sin2(t)+(cot(t)1sin(t))2
Step 1.9
Rewrite cot(t) in terms of sines and cosines.
sin2(t)+(cos(t)sin(t)1sin(t))2
Step 1.10
Multiply by the reciprocal of the fraction to divide by 1sin(t).
sin2(t)+(cos(t)sin(t)sin(t))2
Step 1.11
Write sin(t) as a fraction with denominator 1.
sin2(t)+(cos(t)sin(t)sin(t)1)2
Step 1.12
Cancel the common factor of sin(t).
Tap for more steps...
Step 1.12.1
Cancel the common factor.
sin2(t)+(cos(t)sin(t)sin(t)1)2
Step 1.12.2
Rewrite the expression.
sin2(t)+cos2(t)
sin2(t)+cos2(t)
sin2(t)+cos2(t)
Step 2
Apply pythagorean identity.
1
 [x2  12  π  xdx ]