Trigonometry Examples

Expand the Trigonometric Expression cos(x/2)
cos(x2)cos(x2)
Step 1
Apply the cosine half-angle identity cos(x2)=±1+cos(x)2cos(x2)=±1+cos(x)2.
±1+cos(x)2±1+cos(x)2
Step 2
Rewrite 1+cos(x)21+cos(x)2 as 1+cos(x)21+cos(x)2.
±1+cos(x)2±1+cos(x)2
Step 3
Multiply 1+cos(x)21+cos(x)2 by 2222.
±1+cos(x)222±1+cos(x)222
Step 4
Combine and simplify the denominator.
Tap for more steps...
Step 4.1
Multiply 1+cos(x)21+cos(x)2 by 2222.
±1+cos(x)222±1+cos(x)222
Step 4.2
Raise 22 to the power of 11.
±1+cos(x)2212±1+cos(x)2212
Step 4.3
Raise 22 to the power of 11.
±1+cos(x)22121±1+cos(x)22121
Step 4.4
Use the power rule aman=am+naman=am+n to combine exponents.
±1+cos(x)221+1±1+cos(x)221+1
Step 4.5
Add 11 and 11.
±1+cos(x)222±1+cos(x)222
Step 4.6
Rewrite 2222 as 22.
Tap for more steps...
Step 4.6.1
Use nax=axnnax=axn to rewrite 22 as 212212.
±1+cos(x)2(212)2±1+cos(x)2(212)2
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
±1+cos(x)22122±1+cos(x)22122
Step 4.6.3
Combine 1212 and 22.
±1+cos(x)2222±1+cos(x)2222
Step 4.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.6.4.1
Cancel the common factor.
±1+cos(x)2222
Step 4.6.4.2
Rewrite the expression.
±1+cos(x)221
±1+cos(x)221
Step 4.6.5
Evaluate the exponent.
±1+cos(x)22
±1+cos(x)22
±1+cos(x)22
Step 5
Combine using the product rule for radicals.
±(1+cos(x))22
Step 6
Reorder factors in ±(1+cos(x))22.
±2(1+cos(x))2
 [x2  12  π  xdx ]