Enter a problem...
Trigonometry Examples
cos(x2)cos(x2)
Step 1
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2cos(x2)=±√1+cos(x)2.
±√1+cos(x)2±√1+cos(x)2
Step 2
Rewrite √1+cos(x)2√1+cos(x)2 as √1+cos(x)√2√1+cos(x)√2.
±√1+cos(x)√2±√1+cos(x)√2
Step 3
Multiply √1+cos(x)√2√1+cos(x)√2 by √2√2√2√2.
±√1+cos(x)√2⋅√2√2±√1+cos(x)√2⋅√2√2
Step 4
Step 4.1
Multiply √1+cos(x)√2√1+cos(x)√2 by √2√2√2√2.
±√1+cos(x)√2√2√2±√1+cos(x)√2√2√2
Step 4.2
Raise √2√2 to the power of 11.
±√1+cos(x)√2√21√2±√1+cos(x)√2√21√2
Step 4.3
Raise √2√2 to the power of 11.
±√1+cos(x)√2√21√21±√1+cos(x)√2√21√21
Step 4.4
Use the power rule aman=am+naman=am+n to combine exponents.
±√1+cos(x)√2√21+1±√1+cos(x)√2√21+1
Step 4.5
Add 11 and 11.
±√1+cos(x)√2√22±√1+cos(x)√2√22
Step 4.6
Rewrite √22√22 as 22.
Step 4.6.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
±√1+cos(x)√2(212)2±√1+cos(x)√2(212)2
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
±√1+cos(x)√2212⋅2±√1+cos(x)√2212⋅2
Step 4.6.3
Combine 1212 and 22.
±√1+cos(x)√2222±√1+cos(x)√2222
Step 4.6.4
Cancel the common factor of 22.
Step 4.6.4.1
Cancel the common factor.
±√1+cos(x)√2222
Step 4.6.4.2
Rewrite the expression.
±√1+cos(x)√221
±√1+cos(x)√221
Step 4.6.5
Evaluate the exponent.
±√1+cos(x)√22
±√1+cos(x)√22
±√1+cos(x)√22
Step 5
Combine using the product rule for radicals.
±√(1+cos(x))⋅22
Step 6
Reorder factors in ±√(1+cos(x))⋅22.
±√2(1+cos(x))2