Trigonometry Examples

Find the Exact Value (tan((5pi)/12)+tan(pi/4))/(1-tan((5pi)/12)tan(pi/4))
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
The exact value of is .
Tap for more steps...
Step 1.1.1
Split into two angles where the values of the six trigonometric functions are known.
Step 1.1.2
Apply the sum of angles identity.
Step 1.1.3
The exact value of is .
Step 1.1.4
The exact value of is .
Step 1.1.5
The exact value of is .
Step 1.1.6
The exact value of is .
Step 1.1.7
Simplify .
Tap for more steps...
Step 1.1.7.1
Multiply the numerator and denominator of the fraction by .
Tap for more steps...
Step 1.1.7.1.1
Multiply by .
Step 1.1.7.1.2
Combine.
Step 1.1.7.2
Apply the distributive property.
Step 1.1.7.3
Cancel the common factor of .
Tap for more steps...
Step 1.1.7.3.1
Cancel the common factor.
Step 1.1.7.3.2
Rewrite the expression.
Step 1.1.7.4
Multiply by .
Step 1.1.7.5
Simplify the denominator.
Tap for more steps...
Step 1.1.7.5.1
Multiply by .
Step 1.1.7.5.2
Multiply by .
Step 1.1.7.5.3
Cancel the common factor of .
Tap for more steps...
Step 1.1.7.5.3.1
Move the leading negative in into the numerator.
Step 1.1.7.5.3.2
Cancel the common factor.
Step 1.1.7.5.3.3
Rewrite the expression.
Step 1.1.7.6
Multiply by .
Step 1.1.7.7
Multiply by .
Step 1.1.7.8
Expand the denominator using the FOIL method.
Step 1.1.7.9
Simplify.
Step 1.1.7.10
Simplify the numerator.
Tap for more steps...
Step 1.1.7.10.1
Reorder terms.
Step 1.1.7.10.2
Raise to the power of .
Step 1.1.7.10.3
Raise to the power of .
Step 1.1.7.10.4
Use the power rule to combine exponents.
Step 1.1.7.10.5
Add and .
Step 1.1.7.11
Rewrite as .
Step 1.1.7.12
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.7.12.1
Apply the distributive property.
Step 1.1.7.12.2
Apply the distributive property.
Step 1.1.7.12.3
Apply the distributive property.
Step 1.1.7.13
Simplify and combine like terms.
Tap for more steps...
Step 1.1.7.13.1
Simplify each term.
Tap for more steps...
Step 1.1.7.13.1.1
Multiply by .
Step 1.1.7.13.1.2
Move to the left of .
Step 1.1.7.13.1.3
Combine using the product rule for radicals.
Step 1.1.7.13.1.4
Multiply by .
Step 1.1.7.13.1.5
Rewrite as .
Step 1.1.7.13.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 1.1.7.13.2
Add and .
Step 1.1.7.13.3
Add and .
Step 1.1.7.14
Cancel the common factor of and .
Tap for more steps...
Step 1.1.7.14.1
Factor out of .
Step 1.1.7.14.2
Factor out of .
Step 1.1.7.14.3
Factor out of .
Step 1.1.7.14.4
Cancel the common factors.
Tap for more steps...
Step 1.1.7.14.4.1
Factor out of .
Step 1.1.7.14.4.2
Cancel the common factor.
Step 1.1.7.14.4.3
Rewrite the expression.
Step 1.1.7.14.4.4
Divide by .
Step 1.2
The exact value of is .
Step 1.3
Add and .
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
The exact value of is .
Tap for more steps...
Step 2.1.1
Split into two angles where the values of the six trigonometric functions are known.
Step 2.1.2
Apply the sum of angles identity.
Step 2.1.3
The exact value of is .
Step 2.1.4
The exact value of is .
Step 2.1.5
The exact value of is .
Step 2.1.6
The exact value of is .
Step 2.1.7
Simplify .
Tap for more steps...
Step 2.1.7.1
Multiply the numerator and denominator of the fraction by .
Tap for more steps...
Step 2.1.7.1.1
Multiply by .
Step 2.1.7.1.2
Combine.
Step 2.1.7.2
Apply the distributive property.
Step 2.1.7.3
Cancel the common factor of .
Tap for more steps...
Step 2.1.7.3.1
Cancel the common factor.
Step 2.1.7.3.2
Rewrite the expression.
Step 2.1.7.4
Multiply by .
Step 2.1.7.5
Simplify the denominator.
Tap for more steps...
Step 2.1.7.5.1
Multiply by .
Step 2.1.7.5.2
Multiply by .
Step 2.1.7.5.3
Cancel the common factor of .
Tap for more steps...
Step 2.1.7.5.3.1
Move the leading negative in into the numerator.
Step 2.1.7.5.3.2
Cancel the common factor.
Step 2.1.7.5.3.3
Rewrite the expression.
Step 2.1.7.6
Multiply by .
Step 2.1.7.7
Multiply by .
Step 2.1.7.8
Expand the denominator using the FOIL method.
Step 2.1.7.9
Simplify.
Step 2.1.7.10
Simplify the numerator.
Tap for more steps...
Step 2.1.7.10.1
Reorder terms.
Step 2.1.7.10.2
Raise to the power of .
Step 2.1.7.10.3
Raise to the power of .
Step 2.1.7.10.4
Use the power rule to combine exponents.
Step 2.1.7.10.5
Add and .
Step 2.1.7.11
Rewrite as .
Step 2.1.7.12
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.7.12.1
Apply the distributive property.
Step 2.1.7.12.2
Apply the distributive property.
Step 2.1.7.12.3
Apply the distributive property.
Step 2.1.7.13
Simplify and combine like terms.
Tap for more steps...
Step 2.1.7.13.1
Simplify each term.
Tap for more steps...
Step 2.1.7.13.1.1
Multiply by .
Step 2.1.7.13.1.2
Move to the left of .
Step 2.1.7.13.1.3
Combine using the product rule for radicals.
Step 2.1.7.13.1.4
Multiply by .
Step 2.1.7.13.1.5
Rewrite as .
Step 2.1.7.13.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 2.1.7.13.2
Add and .
Step 2.1.7.13.3
Add and .
Step 2.1.7.14
Cancel the common factor of and .
Tap for more steps...
Step 2.1.7.14.1
Factor out of .
Step 2.1.7.14.2
Factor out of .
Step 2.1.7.14.3
Factor out of .
Step 2.1.7.14.4
Cancel the common factors.
Tap for more steps...
Step 2.1.7.14.4.1
Factor out of .
Step 2.1.7.14.4.2
Cancel the common factor.
Step 2.1.7.14.4.3
Rewrite the expression.
Step 2.1.7.14.4.4
Divide by .
Step 2.2
Apply the distributive property.
Step 2.3
Multiply by .
Step 2.4
The exact value of is .
Step 2.5
Multiply by .
Step 2.6
Subtract from .
Step 3
Multiply by .
Step 4
Combine fractions.
Tap for more steps...
Step 4.1
Multiply by .
Step 4.2
Expand the denominator using the FOIL method.
Step 4.3
Simplify.
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Expand using the FOIL Method.
Tap for more steps...
Step 5.1.1
Apply the distributive property.
Step 5.1.2
Apply the distributive property.
Step 5.1.3
Apply the distributive property.
Step 5.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Multiply by .
Step 5.2.1.2
Move to the left of .
Step 5.2.1.3
Rewrite as .
Step 5.2.1.4
Combine using the product rule for radicals.
Step 5.2.1.5
Multiply by .
Step 5.2.1.6
Rewrite as .
Step 5.2.1.7
Pull terms out from under the radical, assuming positive real numbers.
Step 5.2.2
Add and .
Step 5.2.3
Add and .
Step 5.2.4
Subtract from .
Step 6
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 6.1
Cancel the common factor of and .
Tap for more steps...
Step 6.1.1
Factor out of .
Step 6.1.2
Move the negative one from the denominator of .
Step 6.2
Rewrite as .
Step 7
The result can be shown in multiple forms.
Exact Form:
Decimal Form: