Trigonometry Examples

Verify the Identity (tan(x))/(sec(x))+(cot(x))/(csc(x))=sin(x)+cos(x)
tan(x)sec(x)+cot(x)csc(x)=sin(x)+cos(x)
Step 1
Start on the left side.
tan(x)sec(x)+cot(x)csc(x)
Step 2
Convert to sines and cosines.
Tap for more steps...
Step 2.1
Write tan(x) in sines and cosines using the quotient identity.
sin(x)cos(x)sec(x)+cot(x)csc(x)
Step 2.2
Apply the reciprocal identity to sec(x).
sin(x)cos(x)1cos(x)+cot(x)csc(x)
Step 2.3
Write cot(x) in sines and cosines using the quotient identity.
sin(x)cos(x)1cos(x)+cos(x)sin(x)csc(x)
Step 2.4
Apply the reciprocal identity to csc(x).
sin(x)cos(x)1cos(x)+cos(x)sin(x)1sin(x)
sin(x)cos(x)1cos(x)+cos(x)sin(x)1sin(x)
Step 3
Simplify each term.
sin(x)+cos(x)
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
tan(x)sec(x)+cot(x)csc(x)=sin(x)+cos(x) is an identity
 [x2  12  π  xdx ]